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° Investigate deep learning methods for
protein structure prediction

. Collaboration with Robert Paul at MIMH
(various mental health datasets)

° Collaboration with Lauren Salmimen at
USC (UK biobank datasets, and various
other datasets)

° Collaboration with researchers at
International Maize and Wheat
Development Center (CIMMYT)




How do artificial neural networks learn to predict protein structures?



The central dogma in molecular biology

e The fundamental process in life is the flow of information from DNA to proteins

o How does this happen?
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http://www.youtube.com/watch?v=gG7uCskUOrA&t=35

Protein folding is important

e Proteins are fundamental to understanding their role within the body

e Many diseases are believed to be caused by misfolded proteins
o Alzheimer’s, Parkinson’s, Huntington’s, cystic fibrosis, etc.

e One of the top 100 questions selected by the Science magazine



The need to obtain precise 3D structures

- Antibiotics need to kill pathogenic organisms like

bacteria without poisoning the patient

- Often, these drugs attack proteins that are only
found in the targeted bacterium which are crucial

for their survival or multiplication

- For instance, penicillin attacks the enzyme that

builds bacterial cell walls

https://cdn.rcsb.org/pdb101/learn/resources/how-do-drugs-work-flyer.pdf



https://cdn.rcsb.org/pdb101/learn/resources/how-do-drugs-work-flyer.pdf

Only around 160K protein structures are solved so far
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Can we predict protein structures accurately today?

http://predictioncenter.org/
Critical Assessment of Protein Structure Prediction

Models predicted by DeepMind in CASP 13 (2018)

T0954 /6CVZ T0965 / 6D2V T0955 / SWOF

Structures:
Ground truth (green)
Predicted (blue)

World-wide competition
held every two years
(3 months long)

https://deepmind.com/blog/article/alphafold



https://deepmind.com/blog/article/alphafold
http://predictioncenter.org/

What does Al do exactly?



This is how computer scientists predict protein structures

Anfinsen's Dogma (1973)
Native structure is determined only
by the protein's amino acid sequence

THE
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The Royal Swedish Academy of Sciences has decided to award the 1972 Nobel Prize in Chemistry
to

Christian B. Anfinsen, National Institutes of Health, Bethesda, MD, USA

for his work on ribonuclease, especially concerning the connection between the amino acid
sequence and the biologically active conformation
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The distance prediction problem is an Al problem

A Protein’s Amino Acid Sequence
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Attacking the protein distance prediction problem

Multiple Sequence Alignment
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‘ Generating Large and High-quality MSAs

a The Right Deep Learning Architecture

DL e Feature Engineering (encoding, 1D to 2D, covariance/precision matrix) True Ground Truth
Structure for DL

a Appropriate Loss Function (besides binary_crossentropy, MSE, etc.)




All top methods predict distances using residual neural networks

De novo protein folding using statistical
potentials from deep learning

R.Evans, J.Jumper, J.Kirkpatrick, L.Sifre, T.F.G.Green, C.Qin, A.Zidek, A.Nelson, A.Bridgland,
abis,

H.Penedones, S.Petersen, K.Simonyan, D.T.Jones "/, K Kavukcuoglu, D.Hassabi
A.W.Senior

ﬁ DeepMind
Group 043 / A7D / AlphaFold
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DeepMetaPSICOV (DMP) in CASP13

Shaun M Kandathil
University College London
&

The Francis Crick Institute

DeepMetaPSICOV model architecture
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Top Methods in the most recent CASP Competition

ResTriplet/TripletRes:
Learning contact-maps from a triplet of
coevolutionary matrices

Eric W. Bell, Yang Li, Chengxin Zhang,
Dong-Jun Yu, Yang Zhang

Department of Computational Medicine and Bioinformatics,
University of Michigan - Ann Arbor
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All these results show that residual networks are best architectures (for this problem)




Can We Learn to Predict Contacts WITHOUT ‘True’ Contacts?
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Covariance / Coevolution

High covariance implies physical closeness!

Does this mean we can write an algorithm to predict contacts?




Can We Learn to Predict Contacts WITHOUT ‘True’ Contacts?
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Protein structure prediction from
sequence variation
Debora S Marks ™, Thomas A Hopf & Chris Sander

Nature Biotechnology 30, 1072-1080 (2012) = Download Citation &




Can We Write Algorithms to Remove Transitive Noise?

Protein 3D Structure Computed from Evolutionary
Sequence Variation

Debora S. Marks B3 [E], Lucy J. Colwell BJ, Robert Sheridan, Thomas A. Hopf, Andrea Pagnani, Riccardo Zecchina,

Chris Sander

Published: December 7, 2011 « https://doi.org/10.1371/journal.pone.0028766

FreeContact: fast and free software for protein
contact prediction from residue co-evolution

Lészlé Kajan, Thomas A Hopf, Matas Kala§, Debora S Marks and Burkhard Rost &%

BMC Bioinformatics 2014 15:85
https://doi.org/10.1186/1471-2105-15-85 = © Kajan et al.; licensee BioMed Central Ltd. 2014
Received: 30 Sep ber 2013 A d: 18 March 2014 = Published: 26 March 2014

P

PSICOV: precise structural contact prediction using
sparse inverse covariance estimation on large
multiple sequence alignments @

David T. Jones %, Daniel W. A. Buchan, Domenico Cozzetto, Massimiliano Pontil
Author Notes

Bioinformatics, Volume 28, Issue 2, 15 January 2012, Pages 184-190,
https://doi.org/10.1093/bioinformatics/btr638
Published: 17 November2011 Article history v

CCMpred—fast and precise prediction of protein
residue—residue contacts from correlated
mutations 3

Stefan Seemayer, Markus Gruber, Johannes Soding ™ Author Notes

Bioinformatics, Volume 30, Issue 21, 1 November 2014, Pages 3128-3130,
https://doi.org/10.1093/bioinformatics/btu500
Published: 26 July 2014  Article history v



Can Deep Learning Remove Transitive Noise?
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Precision of top L/5 Long-Range Contacts

DEEPCON DeepCov PconsC4 CCMpred FreeContact

DEEPCON: protein contact prediction using dilated
convolutional neural networks with dropout
Badri Adhikari &

Bioinformatics, btz593, https://doi.org/10.1093/bioinformatics/btz593
Published: 29 July 2019  Article history v




What does Al do exactly?

It learns from input/output pairs and can outperform an algorithm based on theories!



How does Al work?



Neural plasticity

In 1953, Professor Theodor Erismann devised an experiment
- performing it upon his assistant and student, lvo Kohler

He made Kohler wear a pair of hand-engineered goggles
- Specially arranged mirrors flipped the light that would reach
eyes, top becoming bottom, and bottom top.

After 10 days, Kohler had grown accustomed to the invariably
upside-down world
- everything seemed to him normal, rightside-up
- He could do everyday activities in public perfectly well: walk
along a crowded sidewalk, even ride a bicycle

https://www.thequardian.com/education/2012/nov/12/improbable-research-seeing-upside-down



https://www.theguardian.com/education/2012/nov/12/improbable-research-seeing-upside-down

Neural plasticity
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SHARE  REPORTS
Eye-specific termination bands in tecta of three-eyed

frogs

M Constantine-Paton, MiLaw Dy Martha Constantine-Paton is a neuroscientist at MIT

+ See all authors and affiliations

Science 10 Nov 1978:
Vol. 202, Issue 4368, pp. 639-641
DOI: 10.1126/science.309179
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Biological vs. artificial neurons
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Feed-forward neural networks are very successful
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Human visual cortex is hierarchical

ommand
Categorical judgments, e . :
decision making Simple visual forms,

% edges, corners

LGN: lateral geniculate nucleus
V1: primary visual cortex

V2: secondary visual cortex
V4: visual area 4

AIT and PIT: anterior and
posterior inferotemporal cortex
PFC: prefrontal cortex

PMC: premotor cortex

MC: motor cortex

To spinal cord
LEARNING
REVOLUTION

TERRENCE J. SEJNOWSKI




Artificial Intelligence vs. Machine Learning vs. Deep Learning

ARTIFICIAL

INTELLIGENCE Deep Learnin
LEARNING e‘Eowerful trending

ML methods




The State Of Computer ViSiOﬂ and AI we are really, really far away

Some things “we” understand easily

There are 3 mirrors in the scene so some of
those people are “fake” replicas from
different viewpoints

Recognize Obama from the few pixels that
make up his face

You recognize that there’s a person
standing on a scale, even though the scale
occupies only very few white pixels that
blend with the background

Obama has his foot positioned just slightly
on top of the scale

Working physics - Obama is leaning in on
the scale, which applies a force on it. Scale
measures force that is applied on it, that’s
how it works => it will over-estimate the
weight of the person standing on it.

The person measuring his weight is not

- aware of Obama doing this
-F"_.’!,-;.
ﬂs’rf' & A There are people in the back who find the

: \& person’s imminent confusion funny

http://karpathy.qithub.io/2012/10/22/state-of-computer-vision/
2019 UMSL Biology Department Seminars September 3, 2019 How ANNSs learn to predict protein structures? - Slide 26 © Badri Adhikari



http://karpathy.github.io/2012/10/22/state-of-computer-vision/

Residual networks, used for distance prediction, are ConvNets

Input Image Input Volume Dot products Activation map Fully connected network
Activation

| P function |
wei hts | (Sigmoid, .
. i RelU, etc.) weights
1 layer
3 channels

Eye’s understanding
of the input data

Dense neural network

Output of filter (1 value)

n
2 w;x; + bo
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3 X 3 fllter m Mathematically,
. Itis simply a

FxFxC matrix
Convolutional neurons are like our “eyes with memory”..




Residual networks
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Residual networks
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Variants of residual networks can perform even better
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DEEPCON: protein contact prediction using dilated
convolutional neural networks with dropout
Badri Adhikari &

Bioinformatics, btz593, https://doi.org/10.1093/bioinformatics/btz593
Published: 29 July 2019  Article history v




Hardware for protein distance prediction

Most current deep learning experiments are performed on sample datasets:
- 3 Krepresentative proteins [200 GB]
- Special SSDs known as M2s that directly attach to the motherboard
- Powerful GPUs such as V100 and P6000 are required

- One experiment (training) takes about 24 hours

Full dataset:
= T B
- 50 K proteins [around 10 TB] == === |

- One experiment can take up to 10 days

Feature generation:
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- 1000s of CPU time for a few days




Present and Future Research in Protein Folding



Increased interest from industry
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Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences

Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma,
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Reinforcement learning.. a big hope..

Game of Go




A lot of data + many powerful algorithms = much work to do

Multiple Sequence Alignment

Bl e Predicted

Contact/Distance
Map 3D Model
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o Generating Large and High-quality MSAs
e The Right Deep Learning Architecture G 0
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oL e Feature Engi ing (encoding, 1D to 2D, i lprecision matrix) True Ground Truth
Structure for DL

° Appropriate Loss Function (besides binary_crossentropy, MSE, etc.)

A unique problem



Deep learning for biology and medicine

Disease and patient Fundamental Treatment of
categorization biological study patients
Imaging applications Electronic Clinical decision Drug Drug
in healthcare health records making repositioning development
Predicting patient Clinical trials
trajectories efficiency
Protein secondary Gene Transcription factors Solicin Micro-RNA Promoters, enhancers,
structure and tertiary expression and RNA-binding plicing binding and related
structure proteins epigenomic tasks

Morphological Legand-based Structure-based De novo
) . ) phenotypes prediction of prediction of drug
©%. bioRxiv bioactivity

bioactivity design

Opportunities And Obstacles For Deep Learning In Biology And Medicine

Single-cell Sequencing and
data Metagenomics variant calling

. © Dave DeCaprio, jun Qi.
S. Segler, © Anthony Giter,

dot: hups/doi.org/10.1 101/142760




Conclusions

Deep learning methods are full of promise but also have a lot of limitations

A key component of the protein folding problem, distance prediction, is largely a
deep learning problem

Solving the problem of protein folding requires expertise from both domains -
deep learning and bioinformatics

Protein folding problem will potentially unravel the limitations of Al and DL
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