

ProteinDistNet: A dataset for deep learning protein inter-residue distances and contacts

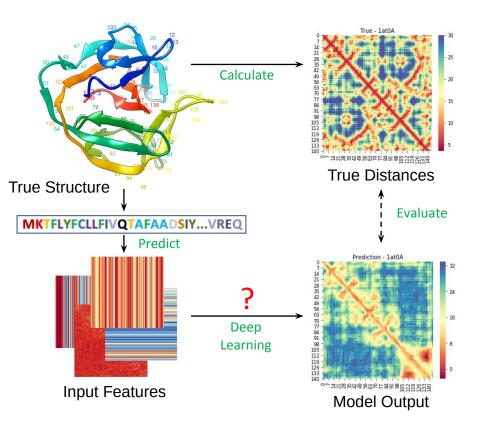
Badri Adhikari Assistant Professor of CS Department of Mathematics & Computer Science University of Missouri-St. Louis

5th International Conference on Protein & RNA Structure Prediction, Punta Cana

December 4, 2019

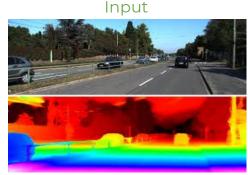
ProteinDistNet - Slide 1

Protein inter-residue distance prediction (PIDP)



Unique features of PIDP problem (compared to other DL problems)

- Large number of input channels
 - Other examples: plant genotype prediction from hyperspectral images
- Input features are 0D, 1D, or 2D
- Visualization is less meaningful
 - Predicted distance/contact maps can be visualized and compared
 - But, the visualizations do NOT enable us to study and debug what the filters are learning
- Non-scalability of protein structures
 - An object in the real world (for example, a chair) may be tiny or large
 - Proteins can also be large or small but the size of structure patterns are always physically fixed
 - The size of an alpha helix is the same in proteins of any size

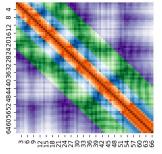


Output - Depth Estimation

O Badri Adhikari

Unique features of PIDP problem (compared to other DL problems)

- Variable input feature volume
 - The length of a protein sequence can vary from a few residues to a few thousand residues
- The goal is to predict distances
 - The problem can be formulated as binary classification, multi-class classification, or regression
 - The ultimate goal is to develop methods that can predict raw physical distances (in Angstroms)
 - Similar to NMR experiments
- Long-range distances are important
 - A model that predicts top L/2 contacts accurately is not always the model with minimum loss
 - This imposes an additional challenge in model training and selection
- Symmetrical along diagonal



Distance prediction: One problem, many questions

"Many questions remain unanswered at this intersection of deep learning and distance prediction"

- Is the data that we have sufficient?
 - If so, why is it that in every CASP competition methods that use newer/larger sequence DBs win?
- Are the current deep learning methods "fit" for the distance prediction problem?
 - Are residual networks and minor variations the end?
- How to best engineer the features?
 - So many features and possible combinations sequence features, coevolution-based algorithms, raw features such as pair frequencies matrix, covariance matrix, and precision matrix
- How similar/different is the structure prediction problem compared with other (well studied) deep learning problems?

Is coevolution information "the solution" to structure prediction?

- The 'hope' from coevolution information
 - MSAs and coevolution information appear to be the path for pushing structure prediction, mainly contact and distance prediction
- The irony:
 - Amino acid sequence in a cell, when folding, does NOT have access to any coevolution or conservation information
- Is coevolution information a 'trap' for us to push structure prediction?
 - How many years should we spend on developing coevolution based method?
 - How far can we push structure prediction using multiple sequence alignments?
 - We need to make that push as soon as possible
 - so we can either get back to the physics and chemistry of protein folding or find another paths that will lead us further

How can we speed up the progress(es) ?

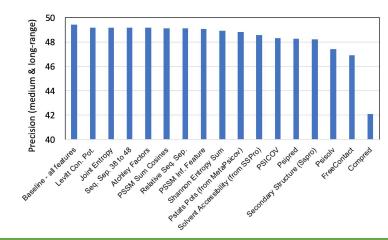
- We need a dataset that is small, representative, & packaged for instant development
- Why?
 - Such datasets allow rapid progress
 - For example, MNIST and ImageNet for computer vision problems
- Do we have such a dataset for protein distance/contact prediction?
 - ProteinNet (Mohammed AlQuraishi)
 - ProSPr (todo) (Wendy M Billings et al.)
- Our goal
 - create such a dataset

Preparation of the "ProteinDistNet" dataset

- Reference
 - The 3456 representative proteins and 150 test protein chains used to train, validate, and test the "DeepCov" method for protein contact prediction
- Removed structural gaps
 - Some chains had adjacent Cβ atoms are too far apart in the 3D space
 - For all the proteins that had such structural discontinuity we only kept the first structural domain
 - 3424 protein chains remained
- Input features and output distance maps
 - Trimmed the chains that are longer to 256 residues
- ProteinDistNet and ProteinDistNet128 datasets
 - Further trimmed the training and validation set to 128 residues (ProteinDistNet128)

Features generation and reduction

- Commonly used features
 - Predicted secondary structures, coevolution features, solvent accessibility, position-specific scoring matrix derived features, Atchley factors, many pre-computed statistical potentials, alignment statistics such as the number of effective sequences, Shannon entropy sum, mean contact potential, normalized mutual information, etc.
- Which of these contain complementary information and which are redundant?



Input features

- 1. Secondary structure predictions (PSIPRED)
- 2. Solvent accessibility predictions (PSIPRED)
- 3. Coevolutionary signals predicted using CCMpred
- 4. Coevolutionary signals predicted using FreeContact
- 5. Contact potentials calculated from multiple sequence alignments
- 6. Shannon entropy of the alignment column
- 7. Sequence profiles from the multiple sequence alignments

The ProteinDistNet dataset

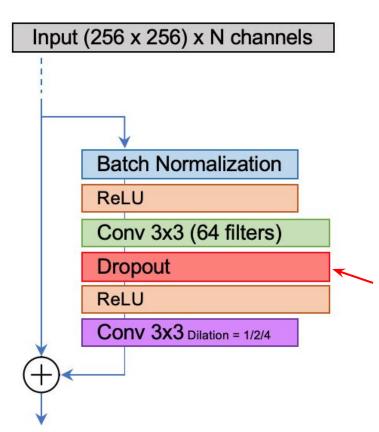
- Number of chains
 - 3424 chains for training and validation with sequence lengths ranging from 50 to 256 residues
 - 150 test protein chains with lengths ranging from 50 to 266 residues
- Disk space
 - ProteinDistNet is only 736 MB & ProteinDistNet128 is only 360 MB (zipped)
- Scripts are all released
 - All the scripts used to curate the dataset, generate the input features and distance maps
 - Scripts with example deep learning models for training, validation and testing
- Development
 - Scripts for generating input features and distance maps are written in Python3 (Tensorflow)
 - The output files are standard *text files* containing lists of protein chain IDs, *pickle files* containing a dictionary of features, and *numpy files* containing numpy array of distance maps

Evaluation of predicted distances

Prediction	Metric	Description			
Distances	M _{LR-L/5}	Mean absolute error of smallest L/5 long-range distances (in Å)			
	M _{LR-L}	Mean absolute error of smallest L long-range distances (in Å)			
	<mark>∱ M</mark> MLR-L/5	Mean absolute error of smallest L/5 medium- or long-range distances (in Å)			
	M _{MLR-L}	Mean absolute error of smallest L medium- or long-range distances (in Å)			
Contacts	Precision of top L/5 long-range contacts				
	P_{LR-L}	Precision of top L long-range contacts			
	P _{MLR-L/5}	Precision of top L/5 medium- and long-range contacts			
	P _{MLR-L}	Precision of top L medium- and long-range contacts			
Not in literature!					

646056

Deep learning architecture used for obtaining benchmark results



Architecture:

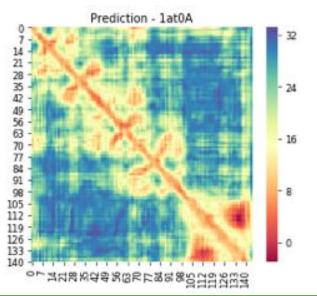
Residual network with dropout and dilation (DEEPCON) Similar to AlphaFold's architecture + Dropout layer Number of residual blocks: 128 Number of parameters: 9.5 million Epochs: 32 Last layer activation: 'sigmoid' or 'relu' Cross-validation or ensembling: None

Training set	Evaluation sets	PLR-L/5
ProteinDistNet128	Validation	68.86
	Test	68.86 93.18 76.16
ProteinDistNet	Validation	76.16
	Test	→ 93.46

The gain from using full 256 dataset (instead of 128) is much higher for validation set.

Distance prediction problem as a "regression problem"

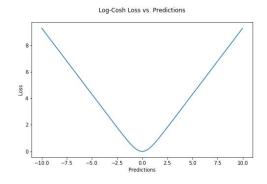
- We set the last layer's activation as 'ReLU' instead of 'sigmoid'
- It is more meaningful to predict inter-residue interactions than non-interactions
 - i.e. it is more important to predict smaller distances more accurately than larger distances
 - Makes sense from the perspective of structure prediction and binding-site prediction

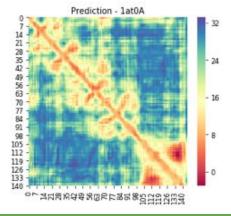


December 4, 2019

Mae, mse, and logcosh losses do not work

- Will the loss functions such as mean squared error or mean absolute error work?
 - They will focus on optimizing the large distance values before the smaller ones
- 'Logcosh' loss (logarithm of hyperbolic of cosine) is found to be highly effective for many problems
 - It is behaves similar to the squared loss for smaller loss values and similar to absolute loss otherwise, i.e. the loss is not so strongly affected by the occasional incorrect predictions
 - This still does not focus on optimizing the smaller distances





ProteinDistNet - Slide 1

"Inverse" logcosh loss

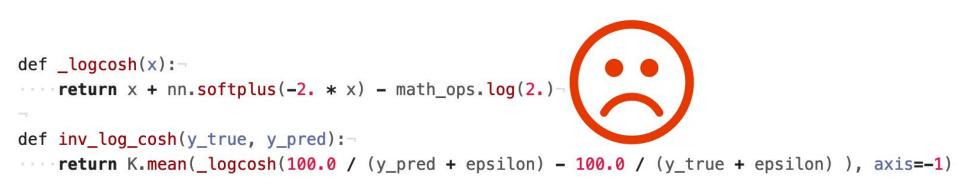
- As a solution, we propose a novel loss function that precisely focuses on optimizing the smaller distances first
 - When training the model, 'reciprocate' the true distances and then apply the standard logcosh loss

$$LohcoshLoss = mean(log(cosh(P - T)))$$

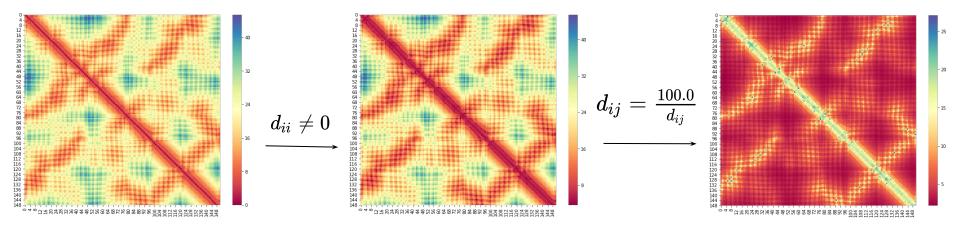
 $InverseLogcoshLoss = K*mean(log(cosh(rac{1.0}{P+e}-rac{1.0}{T+e}))$

- P is predicted distance
- T is true distance
- e is a small positive number (epsilon)
- K is a scalar that simply scales the losses so the values do not underflow
 - We empirically set K to 100

Implementing the "inverse" logcosh loss

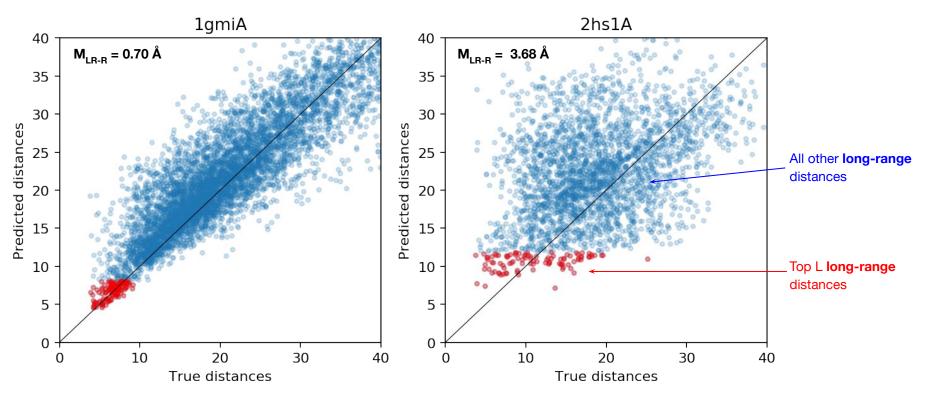


Trick: Invert the input instead of the loss function (reciprocate)



Inverting input works!

Comparison of true long-range distances and the distances predicted by the model



The model effectively focuses on correctly predicting the smaller long-range distances over larger long-range distances.

Distance prediction benchmark

Training set	Evaluation set	MLR-L/5	M _{LR-L}	P _{LR-L/5}	P _{LR-L}
ProteinDistNet128	Validation	2.21	2.70	64.83	38.63
	Test	0.94	1.35	90.69	63.85
ProteinDistNet	Validation	1.99	2.56	72.52	45.92
	Test	0.92	1.32	91.68	66.09

Predict contacts (binary classification)

Training set	Evaluation sets	P _{LR-L/5}	P _{LR-L}
ProteinDistNet128	Validation	68.86	42.74
	Test	93.18	68.13
ProteinDistNet	Validation	76.16	49.98
	Test	93.46	69.31

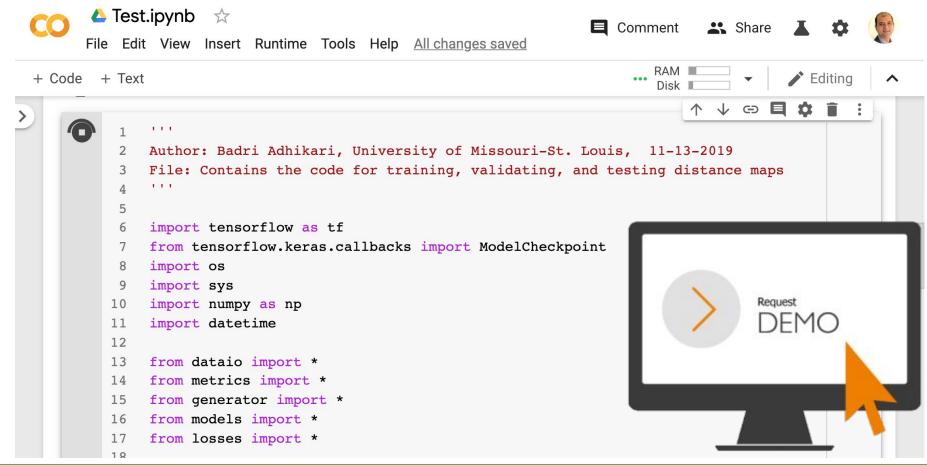
The use of ProteinDistNet

- What deep learning works and does not work for distance prediction?
 - Loss function, architecture comparison, feature engineering, feature importance study, etc.
- Helpful for new students or postdocs
- How accurately can we predict 'raw' distances?
- The models built can be evaluated on CASP12 and CASP13
 - Because the dataset is curated before CASP12
- Machine learning experts unfamiliar with distance prediction can quickly jump in and contribute

Availability

- Github
 - https://github.com/ba-lab/ProteinDistNet
- All scripts are also available
 - All scripts used to generate the features
 - Can be used to train with a much larger dataset
- Manuscript in progress

Training and testing in Google colaboratory



5th International Conference on Protein & RNA Structure Prediction, Punta Cana

Contributions/Conclusions

- A data set that is small, representative, and packaged for instant development
- A 'trick' to attack distance prediction as a regression problem

Acknowledgements

Research Contributions

Mrinal Rawool

Amarilda Dyrmishi Anth

Anthony A.-Nyanzu David Richards

Patrick Kong

IT Support

Philip Reiss Kenneth Voss Michael Remier MU - Research Support (RCSS)

Computing Resources

5th International Conference on Protein & RNA Structure Prediction, Punta Cana

Questions?