

Deep Learning Shines New Hopes on Solving the Half-a-Century-Old Problem of Protein Folding

Badri Adhikari adhikarib @ umsl.edu

Assistant Professor of CS Department of Mathematics & Computer Science University of Missouri-St. Louis

2019 - Rolla

April 10, 2019

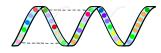
Deep Learning & Protein Contact Prediction - Slide 1

Significance of Protein Contact Prediction

Precise protein contact prediction

Leads to ..

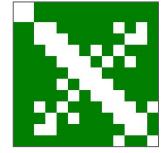
Accurate protein structure / function prediction


Leads to ...

Curing diseases through drug design (cancer, mental health diseases)

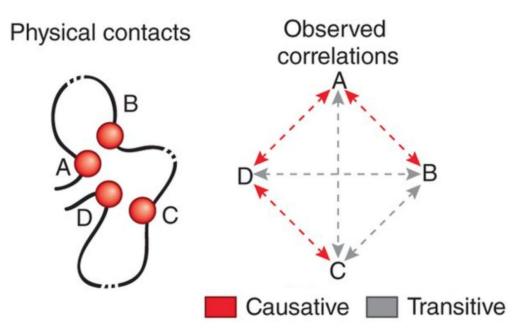
Better understanding of how life works (through understanding of how proteins work)

Improvements in Machine / Deep Learning (because contact prediction is a difficult problem)


What is Protein Contact Prediction?

Predict which amino acids interact with which...

G F G C N G P W D E D D M


Protein Sequence

→

Contact Map

Transitive Noise - The Roadblocks

Perspective | Published: 08 November 2012

Protein structure prediction from sequence variation

Debora S Marks 💐, Thomas A Hopf & Chris Sander 🏁

Nature Biotechnology 30, 1072–1080 (2012) Download Citation ±

Badri Adhikari

Can We Write Algorithms to Remove Transitive Noise?

Protein 3D Structure Computed from Evolutionary Sequence Variation

Debora S. Marks 🚾 🔄, Lucy J. Colwell 🚳, Robert Sheridan, Thomas A. Hopf, Andrea Pagnani, Riccardo Zecchina, Chris Sander

Published: December 7, 2011 • https://doi.org/10.1371/journal.pone.0028766

FreeContact: fast and free software for protein contact prediction from residue co-evolution

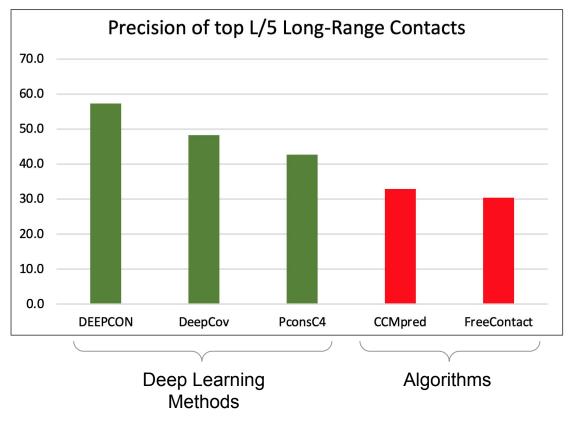
László Kaján, Thomas A Hopf, Matúš Kalaš, Debora S Marks and Burkhard Rost 🔤

BMC Bioinformatics 2014 15:85

 https://doi.org/10.1186/1471-2105-15-85
 ©
 Kaján et al.; licensee BioMed Central Ltd. 2014

 Received: 30 September 2013
 Accepted: 18 March 2014
 Published: 26 March 2014

PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments @


David T. Jones 🕿 , Daniel W. A. Buchan, Domenico Cozzetto, Massimiliano Pontil Author Notes

Bioinformatics, Volume 28, Issue 2, 15 January 2012, Pages 184–190, https://doi.org/10.1093/bioinformatics/btr638 Published: 17 November 2011 Article history ▼

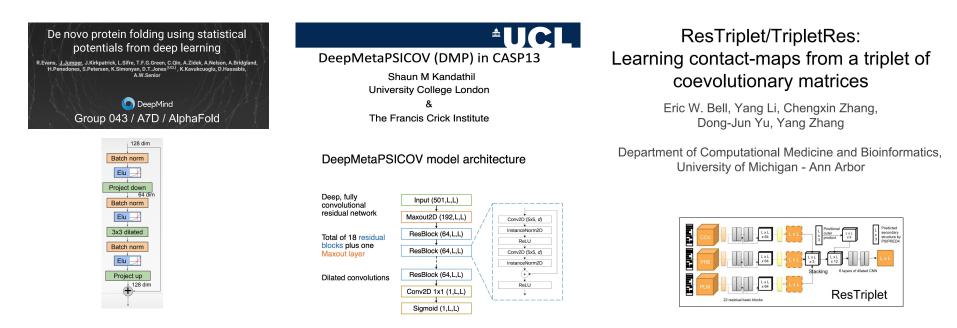
CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations ∂ Stefan Seemayer, Markus Gruber, Johannes Söding Z Author Notes

Bioinformatics, Volume 30, Issue 21, 1 November 2014, Pages 3128–3130, https://doi.org/10.1093/bioinformatics/btu500 Published: 26 July 2014 Article history ▼

Can Deep Learning Remove Transitive Noise?

DEEPCON: Protein Contact Prediction using Dilated Convolutional Neural Networks with Dropout

Badri Adhikari doi: https://doi.org/10.1101/590455 This article is a preprint and has not been peer-reviewed [what does this mean?]



2019 - Rolla

Sadri Adhikar

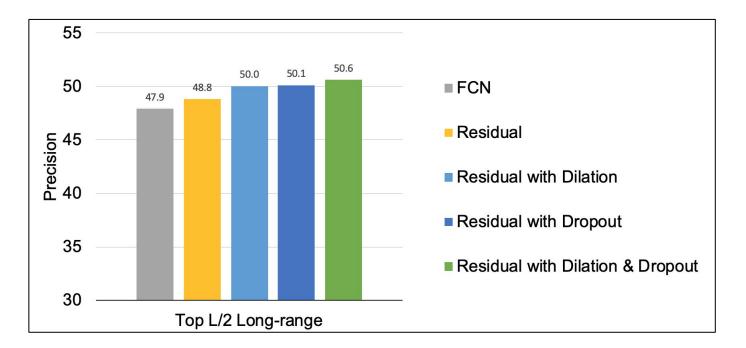
What ConvNet Architectures are Best Fit for Contact Prediction?

Top Methods in the most recent CASP Competition

All these results show that residual networks are best architectures (for this problem)

What Variations of Residual Architectures are Best Fit?

- To obtain an answer we have to try 'almost' all possible architectures
 - A lot of computing resources (GPUs)
- The input data for training is [2 GB to 200 GB+]
 - In one epoch (less than 20 minutes) we need to read 200 GB of data
 - In Lewis cluster, training takes at least 10 days (with regular hard-drives)
 - We need SSDs (SATA & M.2)
- Applied to Google for resources
 - \$5000 worth of Google Cloud Credits
 - Finished them in less than a week and requested more
- Applied to NVIDIA for resources
 - Awarded a Quadro P6000 GPU (performs similar to V100s; extremely useful)



Speed up your research with Google Cloud Platform

The GCP research credits program can help you move from bold ideas to breakthrough discoveries in a fraction of the time. With free credits for Google Cloud Platform, you will have access to the power and flexibility needed to advance your research and scale with ease.

Residual Networks with Dilation & Dropout Perform Best

DEEPCON: Protein Contact Prediction using Dilated Convolutional Neural Networks with Dropout

Badri Adhikari doi: https://doi.org/10.1101/590455

This article is a preprint and has not been peer-reviewed [what does this mean?].

Badri Adhikari

But.. Is There Room for Improvement? YES

"It was good to see Google DeepMind win this time.. I was sick of seeing Rosetta win since almost two decades.."

- a senior scientist at the CASP13 conference

- We are still far from end-to-end deep learning
 - Where Deep Learning will do the magic!

Conclusions

- 1) Groups who were good at exploring 'new flavors' did well
 - Learn various deep learning methods, even when you don't see a direct fit to your problem
- 2) Balanced efforts of ML experts and domain experts brought success

- 3) When end-to-end is not possible, correct feature engineering becomes important
 - For example, for standard images, we don't need feature engineering

Acknowledgements

Research Support & Contribution

Cezary Janikow

Sharlee Climer

Cynthia Jobe

Anthony Ackah-Nyanzu

Sri Harsha Akurathi

IT Support

Kenneth Voss

Michael Remier



MU - Research Computing Support Services Team (RCSS)

Computing Resources

2019 - Rolla

