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Significance of Protein Contact Prediction

Precise protein contact prediction

Leads to..
~

Accurate protein structure / function prediction @
==~

’?/

Leads to..

Curing diseases through drug design é
(cancer, mental health diseases)

Better understanding of how life works
(through understanding of how proteins work)

Improvements in Machine / Deep Learning Pe.
(because contact prediction is a difficult problem) - © RCh




What is Protein Contact Prediction?

G F G C N G P WD E D D M

Protein Sequence

Predict which amino acids interact with which..

Contact Map



Transitive Noise - The Roadblocks

Physical contacts Observed
correlations

Perspective | Published: 08 November 2012
Protein structure prediction from
sequence variation

Marks ™, Thomas A Hopf & Chris Sander ™=

gy 30, 1072-1080 (2012)  Download Citation




Can We Write Algorithms to Remove Transitive Noise?

Protein 3D Structure Computed from Evolutionary
Sequence Variation

Debora S. Marks B3 [E], Lucy J. Colwell BJ, Robert Sheridan, Thomas A. Hopf, Andrea Pagnani, Riccardo Zecchina,

Chris Sander

Published: December 7, 2011 « https://doi.org/10.1371/journal.pone.0028766

FreeContact: fast and free software for protein
contact prediction from residue co-evolution

Lészlé Kajan, Thomas A Hopf, Matas Kala§, Debora S Marks and Burkhard Rost &%

BMC Bioinformatics 2014 15:85
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PSICOV: precise structural contact prediction using
sparse inverse covariance estimation on large
multiple sequence alignments @

David T. Jones %, Daniel W. A. Buchan, Domenico Cozzetto, Massimiliano Pontil
Author Notes

Bioinformatics, Volume 28, Issue 2, 15 January 2012, Pages 184-190,
https://doi.org/10.1093/bioinformatics/btr638
Published: 17 November2011 Article history v

CCMpred—fast and precise prediction of protein
residue—residue contacts from correlated
mutations 3

Stefan Seemayer, Markus Gruber, Johannes Soding ™ Author Notes

Bioinformatics, Volume 30, Issue 21, 1 November 2014, Pages 3128-3130,
https://doi.org/10.1093/bioinformatics/btu500
Published: 26 July 2014  Article history v



Can Deep Learning Remove Transitive Noise?

Precision of top L/5 Long-Range Contacts
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What ConvNet Architectures are Best Fit for Contact Prediction?

De novo protein folding using statistical
potentials from deep learning

R.Evans, J.Jumper, J.Kirkpatrick, L.Sifre, T.F.G.Green, C.Qin, A.Zidek, A.Nelson, A.Bridgland,
abis,

H.Penedones, S.Petersen, K.Simonyan, D.T.Jones "/, K Kavukcuoglu, D.Hassabi
A.W.Senior

ﬁ DeepMind
Group 043 / A7D / AlphaFold
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DeepMetaPSICOV (DMP) in CASP13

Shaun M Kandathil
University College London
&

The Francis Crick Institute

DeepMetaPSICOV model architecture
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Top Methods in the most recent CASP Competition

ResTriplet/TripletRes:
Learning contact-maps from a triplet of
coevolutionary matrices

Eric W. Bell, Yang Li, Chengxin Zhang,
Dong-Jun Yu, Yang Zhang

Department of Computational Medicine and Bioinformatics,
University of Michigan - Ann Arbor
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All these results show that residual networks are best architectures (for this problem)




What Variations of Residual Architectures are Best Fit?

To obtain an answer we have to try ‘almost’ all possible architectures

- Alot of computing resources (GPUs)

The input data for training is [2 GB to 200 GB+]

- In one epoch (less than 20 minutes) we need to read 200 GB of data

- In Lewis cluster, training takes at least 10 days (with regular hard-drives)
- We need SSDs (SATA & M.2)

Applied to Google for resources

Speed up your research with Google Cloud

= Platform
- $5000 worth of Google Cloud Credits L —

akthrough discoveries in a fraction of the time. With free credits
for Google Cloud Platform, you will have access to the power and

- Finished them in less than a week and requested more — feplnesceto s e e

Applied to NVIDIA for resources

- Awarded a Quadro P6000 GPU (performs similar to V100s; extremely useful)



Residual Networks with Dilation & Dropout Perform Best

Precision
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DEEPCON: Protein Contact Prediction using Dilated Convolutional Neural

Networks with Dropout )
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This article is a preprint and has not been peer-reviewed [what does this mean?].




But.. Is There Room for Improvement? YES

“It was good to see Google DeepMind win this time..
I was sick of seeing Rosetta win since almost two decades..”

- a senior scientist at the CASP13 conference

- We are still far from end-to-end deep learning

- Where Deep Learning will do the magic!



Conclusions

1) Groups who were good at exploring ‘new flavors’ did well

- Learn various deep learning methods, even when you don’t see a direct fit to your problem

2) Balanced efforts of ML experts and domain experts brought success

Machine
Learning
Experts

Domain
Experts

3) When end-to-end is not possible, correct feature engineering becomes important

- For example, for standard images, we don’t need feature engineering
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