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Deep Learning DL - term coined in 2000

- DL is a subfield of ML

- DL is Large Neural Networks ™z et S e
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A Hidden Layer
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Many Hidden Layers

“A Little Learning”

layer can approximate (any) continuous functions  Drink deep, or taste not the Pierian spring:
- Universal approximation theorem There shallow draughts intoxicate the brain,

And drinking largely sobers us again.

- ability to represent does not mean ability to learn
- by Alexander Pope

- “Deep” is useful when features need to be
learned

Low-level features Mid-level features High-level features
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Convolutional Neural Networks for Image Classification
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GPUs for Deep CNN Learning

- The MNIST dataset of classifying images i
contains 60,000 training images and 10,000 testing images
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conv2d_2: Conv2D

max_pooling2d_2: MaxPooling2D

with tf.device('/device:GPU:0"'):
model = models.Sequential() conv2d_3: Conv2D
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D( (2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu')) flatten_1: Flatten
model.add(layers.MaxPooling2D( (2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical crossentropy', metrics=['accuracy'])
model.fit(train images, train labels, epochs=8, batch_size=64) dense_2: Dense

dense_1: Dense




Al vs ML vs DL
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Deep Learning Models are NOT Black Boxes
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Deep Learning Models are NOT Black Boxes
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Transfer Learning
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The VGG-16 Architecture

e A deep convolutional network for object recognition developed and trained
by Oxford's renowned Visual Geometry Group (VGG)

o  VGGNet performed very well in the Image Net Large Scale Visual
Recognition Challenge (ILSVRC) in 2014

Current Practice:

Use pretrained models such
as VGG16, Inception-v3 (by
Google), etc.

Most of them are independent
of image size (the
convolutional layers)



Transfer Learning

hxwx3 hxwx64 ’ o, .
R RN h =26 Current Practice:
w'= 35 —6 - Use pretrained models such
as VGG16, Inception-v3 (by
R'xw'xC Google), etc.
W x 1’ x 4096 - Most of them are independent
b x 2 X512 of image size (the
o hox x512’L convolutional layers)
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@ convolution+ReLLU
Eﬁ max pooling
@ convolution
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Example:
The VGG-16 Architecture You want to build your own face
e A deep convolutional network for object recognition developed and trained recognizer to unlock your door

by Oxford's renowned Visual Geometry Group (VGG)
o  VGGNet performed very well in the Image Net Large Scale Visual
Recognition Challenge (ILSVRC) in 2014




Limitations of DL

- Deep learning model is just a chain of simple continuous geometric
transformations mapping one vector space into another

- A deep learning model can be interpreted as a kind of program; but inversely
most programs can't be expressed as deep learning models
- algorithm # deep learning model

- Extreme generalization vs Local generalization
- Extreme generalization: an ability to adapt to novel, never-before-experienced situations using little
data or even no new data at all (abstraction and reasoning)
- Local generalization: mapping from inputs to outputs



DL Tool Chain: From Gathering Data to Decision Making
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Deep Leamning for Plant Stress Phenotyping:
Trends and Future Perspectives
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How Accurately Can We Predict Protein Structures Today?

& Competition: CASP12 (2016)"

A Predictor: Baker-Rosetta (UW)-

S Protein RMSD’

P ‘ Type Count Best Median Worst

12 - Template-based 57 .0.69 4.7 _ 24.2
7 Template-free 58 (2.04) 129 228

World-wide competition
held every two years
(3 months long)

Significance of Contact prediction




Protein Contact Prediction as a Machine Learning Problem

PDB DB

(~100K structures
reduced to < 5K)
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CNNs for Protein Contact Prediction

3 1 3 o 3 o o
300
| > 3 Emn .
N N T N i : A
3 3 3 .
2 3 3
300
F A o
Input Volume Activation from Activation from Activation from

Layer 1 Filters Layer 2 Filters The Last Filter




The DNCON2 Method for Protein Contact Prediction

Contact Map

all features in 2D I
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activation maps.
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Structural Bioinformatics

DNCON2: Improved protein contact prediction using
two-level deep convolutional neural networks

Badri Adhikari, Jie Hou, and Jianlin Cheng



The DNCON2 Method for Protein Contact Prediction
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DNCON2: Protein Contact Prediction Using Deep CNN
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Number of Features (Channels) in Bioinformatics Problems
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Number of Features (Channels) in Bioinformatics Problems

3 channels

Object Recognition

around 100 channels

Protein Structure Prediction

spatial dimension y

spatial dimension x

Hyperspectral imaging
at Donald Danforth Plant Science Center



LOng ShOI’t Term Memory netWOI’kS (may) have a lot of potential for Problems in Bioinformatics
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Deep Learning for Biology and Medicine

Disease and patient Fundamental Treatment of
categorization biological study patients
Imaging applications Electronic Clinical decision Drug Drug
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S. Segler, © Anthony Gitter,
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Conclusion

- Deep learning is models are not a black boxes but deep learning does have
limitations

- Convolutional neural networks (and its variants) have a huge potential to more
accurately solve many problems in bioinformatics

- CNNs have dramatically improved the accuracy of protein contact prediction,
just like they have for many other problems
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