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Abstract
In this study, we report the evaluation of the residue-residue contacts predicted by our three differ-

ent methods in the CASP12 experiment, focusing on studying the impact of multiple sequence

alignment, residue coevolution, and machine learning on contact prediction. The first method

(MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and

solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second

method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple

sequence alignment to derive coevolution-based features, which are integrated by a neural network

method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination

of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On

a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7%

for top L/5 long-range contact predictions. The comparison of the three methods shows that the

quality and effective depth of multiple sequence alignments, coevolution-based features, and

machine learning integration of coevolution-based features and traditional features drive the quality

of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone

can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all

the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are

evaluated. And the correlation between the precision of contact prediction and the logarithm of the

number of effective sequences in alignments is 0.66.
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1 | INTRODUCTION

In the absence of homologous structural templates, a key input for suc-

cessful ab initio protein structure prediction is residue-residue con-

tacts.1,2 If a sufficient number of contacts can be predicted accurately,

they alone can be used to reconstruct near native models for most pro-

teins with accuracy of 2 Å RMSD.3,4 Among all the contacts, long-

range contacts, which are generally harder to predict,5–8 but much

more useful for structure reconstruction.2 Hence, recent contact pre-

diction methods focus on the prediction and evaluation of long-range

contacts, and so do the CASP experiments. When the contact predic-

tion category was introduced in the CASP experiments, in the initial

rounds, methods like SVMcon6 and DNCON5 that use support vector

machines and deep learning networks with traditional features such as

sequence profile, secondary structure and solvent accessibility, were

often the top performers demonstrating that machine learning techni-

ques were useful for contact prediction. Recent methods like

PconsC2,9 MetaPSICOV,8 and RaptorX method10 show that including

contact predictions from coevolution-based methods like CCMpred,11

PSICOV,12 and FreeContact13 as additional features can significantly

improve the performance. Often, when sufficient homologous

sequences can be found, these methods can predict top L/5 or L/10

long-range contacts with pretty high precision,8,10,11 where L is the

length of the protein sequence. All these recently successful methods

highlight that, besides machine learning techniques, coevolution-based

features are important for accurate contact prediction.

Realizing the importance of coevolution-based features, which are

entirely dependent upon the availability of homologous sequences, we
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developed a method for reliably generating deep multiple sequence

alignments and coevolution-based features for accurate contact predic-

tion, and participated in the recent CASP 12 experiment with three

automated contact prediction methods—MULTICOM-NOVEL, MULTI-

COM-CONSTRUCT, and MULTICOM-CLUSTER. Our first method,

MULTICOM-NOVEL, predicts contacts based on a deep learning

contact prediction method—DNCON5 that uses only traditional

features such as sequence profile, secondary structure, and solvent

accessibility. Our second method, MULTICOM-CONSTRUCT, relies on

our deep multiple sequence alignment generation algorithm to predict

coevolution-based features, which are used by a consensus method

MetaPSICOV8 as input to make contact prediction. Our third method,

MULTICOM-CLUSTER, combines the predictions from the first two

methods by choosing their common highly ranked contacts. Our sec-

ond and third predictors mainly rely on our deep alignment generation

algorithm to make predictions. In this article, we discuss the perform-

ance of our methods in the CASP12 experiment, primarily focusing on

identifying the major factors influencing contact prediction accuracy.

Since predicted contacts are most useful for protein sequences for

which homologous structural templates cannot be found, we empha-

size our analysis on free modeling (template-free) targets, although we

also include our analysis for all CASP12 targets to assess the benefits

of combining traditional features and coevolution-based features with

machine learning.

Overall, our contact prediction methods were successful mainly

because of our deep alignment generation algorithm, which generates

high-quality alignments when sufficient homologous alignments can be

found, and at least some alignments (if possible) when homologous

sequences are hard to find. We find that multiple sequence alignments,

coevolution-based features, and machine learning integration are the

key factors for successful protein contact prediction. In addition to the

analysis on predicted contacts, we also discuss some findings of

building 3D structural models using the CONFOLD method14 with our

predicted contacts as input.

2 | MATERIALS AND METHODS

2.1 | Generating deep multiple sequence alignments

to derive coevolution-based features

Multiple sequence alignments (MSAs) play a central role for the success

of a protein contact prediction method because the quality of multiple

sequence alignment (MSA) entirely decides the accuracy of the

coevolution-based contact prediction features, which largely deter-

mines the accuracy of overall contact prediction. Hence, it is crucial to

have a reliable algorithm for producing high quality multiple sequence

alignments. For reliability, it is important that the algorithm generates

at least some sequences when homologous sequences are hard to find

in sequence databases, and generates smaller but more useful align-

ments when an excessively large number of homologous sequences is

available. On one hand, in the absence of any homologous sequences

in the multiple sequence alignments or when there are just a few

sequences, coevolution-based methods fail to make any predictions.

On the other hand, when the size of alignment is too large (eg,

>50 000) and the input protein sequence is long, some methods like

PSICOV12 may take too long to converge and sometimes do not pro-

duce any results even in a few days. Based on this understanding, we

designed an alignment generation algorithm that attempts to generate

high coverage alignments at first, and when sufficient homologous

sequences are not found, relies on various sequence similarity cut-off

thresholds to increase the depth of search to generate at least some

sequences whenever possible.

For generating MSAs, we start by assuming sufficient homologous

sequences covering most of our input sequence are available. Then we

gradually switch toward choosing the settings that allow us to search

deeply to generate at least some sequences. Using HHblits,15 we first

generate alignments that cover 75% of a target sequence and check if

the alignment has at least 2.5 L sequences, where L is the length of the

query sequence. If at least 2.5 L sequences are not obtained, the cover-

age threshold is lowered, at first to 68% and then to 60% if needed. If

none of these coverage thresholds deliver at least 2.5 L sequences, we

switch to using JackHMMER16 to find remotely homologous sequen-

ces. Once again, we assume that sufficient significant hits can be found

and start alignment search with a very stringent e-value cut-off thresh-

old of 1E240 to find homologous sequences. If this threshold fails to

generate at least 2.5 L sequences, we increase the e-value threshold to

1E230, 1E220, 1E210, 1E24, and 1, step by step, and conclude when

>2.5 L sequences are generated. If none of the thresholds leads to an

alignment with >2.5 L sequences, the alignments generated with high

e-value threshold of 1 are used as the final alignment. A range of e-

value thresholds is required because, for some input protein sequences,

a stringent e-value criterion (like 1E240) produces too few sequences

(just a 100 or so) whereas a looser criterion (like 1E24) generates many

sequences. We used the “UNIPROT20–2016” and “UNIREF90”

sequence databases for HHblits and JackHMMER search, respectively.

2.2 | MULTICOM contact prediction methods

Our first method, MULTICOM-NOVEL, is based on our method

DNCON, an ab initio contact prediction method trained using deep

belief networks and boosting.5,17 Unlike recent contact prediction

methods that use coevolutionary features as key features, it does not

use any coevolutionary information. To make contact predictions,

DNCON uses an ensemble of deep belief networks, each consisting of

three layers of Restricted Boltzman Machines (RBM), which were

trained and tested on a large dataset consisting of 1426 proteins. For

each input pair of residues, DNCON predicts medium-range and long-

range contact probabilities using seven sets of deep belief networks

trained using sequence window sizes of 7, 9, 11, 13, 15, 17, and 19 res-

idues. This “ensembling” of predictions from networks trained using dif-

ferent window sizes is one of the key technique that contributes to

DNCON’s performance. The second key contributor of DNCON’s per-

formance is the boosting technique that gradually increases the weight

of misclassified examples during training. For each window size, instead

of using a single deep belief network, DNCON uses ensembles of clas-

sifiers trained using the boosting technology.18 For each classification
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(that is, predicting whether a residue pair is in contact), 35 different

networks were trained serially using 35 rounds of boosting, and the

networks were assigned individual weights. For each input residue pair,

the final prediction probability is the weighted average of the probabil-

ities predicted by individual networks (For more details of DNCON,

see5] and 17).

DNCON’s results from the training and testing experiments show

that an ensemble of models trained at seven window sizes (window

sizes of 7, 9, 11, 13, 15, 17, and 19) delivers an accuracy of 34%, com-

pared to 24% to 28% of individual models, on a test dataset of 196

proteins, when top L/5 long-range contacts are evaluated. DNCON

was the top performer in the CASP10 contact prediction category17

and therefore serves as a good benchmark (baseline) to study where

the improvement of contact prediction comes from in CASP12.

Our second method, MULTICOM-CONSTRUCT, primarily relies

on our deep alignment generation algorithm to generate multiple

sequence alignments, which are supplied as input to the three standard

coevolution-based methods, PSICOV,12 CCMpred,11 and FreeCon-

tact13 to generate two-dimensional coevolution features to be com-

bined by MetaPSICOV8 with traditional features to make contact

prediction. During the development of the method, we found that

some coevolution-based methods like PSICOV sometime could not

converge within a reasonable time limit when there were too many or

too few sequences in alignments. To guarantee to generate predictions

from such methods within a certain time limit, tweaking their conver-

gence parameters is needed. Specifically, to get around the conver-

gence issue of PSICOV, we run it with three convergence parameters

(“d50.03”, “r50.001”, and “r50.01”) in parallel and wait for a maxi-

mum of 5 hours. The “d” parameter selects the glasso exact algorithm

and is expected to produce more accurate results but is slow. The “rho”

parameter (r) controls how quickly the programs converges and higher

values tend to speed up the convergence but at the loss of prediction

accuracy. We pick the job that finishes within the 5-hour time limit

according to the order (“d50.03”, “r50.001”, and “r50.01”). In this

way we are always able to have some prediction produced within the

limited time. Such a shorter time limit was used during the CASP

12 experiment because our ab initio structure prediction methods

used these predicted contacts as input to build 3D models, which

themselves needed up to 2 days to build models.

Our third method, MULTICOM-CLUSTER, is a meta-predictor that

combines contacts predicted by the first two methods. When at least

50 homologous sequences are found, this method uses the predictions

made by MULTICOM-CONSTRUCT, otherwise combines the predic-

tions of MULITICOM-CONSTRUCT and MULTICOM-NOVEL. As the

first step for contact combination, we select two sets of up to 5 L long-

range contacts—one set from MULTICOM-NOVEL and another set

from MULTICOM-CONSTRUCT. For each target, we first select top

5 L contacts predicted by MULTICOM-NOVEL filtering out all the con-

tacts not predicted by MULTICOM-CONSTRUCT, and then select up

to top 5 L contacts predicted by MULTICOM-CONSTRUCT which are

present in the top 5 L contacts from MULTICOM-NOVEL. This new

set of contacts by MULTICOM-CONSTRUCT (having at most 5 L con-

tacts), and the set of contacts by MULTICOM-NOVEL are then

updated by replacing their confidence values with the ranks, that is,

integer numbers starting from “5L” for the most confident contact pre-

diction and ending at “1” for the least confident one. At this point, both

sets have same contacts but different rankings. Then, the ranks for the

MULTICOM-CONSTRUCT’s set are updated as the sum of the ranks in

the two sets and are normalized by 10 L. This new rank scores are then

used to sort the contacts, as confidence scores, and used as input for

MULTICOM-CLUSTER predictions. The final step is to scale the confi-

dence values into a meaningful range between 0 and 1. Ideally, if we

knew the number of long-range contacts in the target structure (Nc),

we would normalize the confidence values such that the top Nc predic-

tions have confidence >0.5. In the absence of such knowledge in real-

ity, we normalize the confidence scores such that top L predicted

contacts have confidence values >0.5, and submitted these contacts as

MULTICOM-CLUSTER predictions.

2.3 | Datasets and evaluation metrics

Out of the 90 targets released during the CASP 12 season, CASP12’s offi-

cial contact evaluations released at CASP’s website were carried out on

70 targets (that is, corresponding to 94 domains), excluding domains

“T0865-D1” and “T0880-D1” because they do not have any long-range

contacts. In this study, we consider all these 94 structural domains and its

subset of 38 free-modeling domains for evaluation and comparison of

our three methods, MULTICOM-NOVEL, MULTICOM-CONSTRUCT,

and MULTICOM-CLUSTER. In this set of 94 domains, the native struc-

tures of 84 of them were available for our assessments. Hence, for some

of our own evaluations, like evaluating the precision of coevolutionary

features, we use these 84 domains only. And to maintain consistency

with the CASP released evaluations, we focus our analysis and evaluation

at the domain level, although all predictions were made for the whole

targets during the CASP12 experiment. Finally, before the CASP12

experiment, we used the dataset of CASP11 free-modeling domains to

benchmark our methods. The results on CASP11 are also reported as a

comparison with those on CASP12.

In addition to using our ConEVA contact evaluation toolkit19 to do

evaluation, we also referred to the evaluations published by CASP

(released at http://predictioncenter.org/). We focus our evaluations on

top L/5 and L/2 predicted long-range contacts and use precision as the

primary evaluation metric, which is the fraction (ratio) of correct predic-

tions in top predicted contacts. One important factor influencing the

precision of contact prediction is the number of effective sequences in

multiple sequence alignment, Meff,
20 which is calculated at the domain

or target level using the following equation:

Meff5
XN

i50

1
ni

where N is the number of sequences in the multiple sequence align-

ment and ni is the number of sequences which have at least 62%

sequence identity with the ith sequence.8 If all sequences in the align-

ment are very different, ni is 1 for each sequence and hence Meff sums

to N, and on the contrary, if all sequences are very similar, ni is equal to

N for all sequences and the sum of 1/N for N sequences gives 1, that
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is, the Meff is just 1. For calculating Meff at the domain level, we trim

the multiple sequence alignment column-wise, removing all the col-

umns for which the reference native structure of a domain does not

have any residues defined, so that the width of the alignment (number

of columns) is same as the number of residues in the native structure

of the domain.

3 | RESULTS AND DISCUSSION

3.1 | Initial benchmark on CASP11 free-modeling

dataset before CASP12 experiment

Prior to the CASP 12 experiment, we evaluated MULTICOM-

CONSTRUCT that uses our new deep alignment generation algorithm

to generate coevolution features for contact prediction, on the dataset

of 30 free-modeling structural domains of the CASP 11 experiment.21

Following MULTICOM-CONSTRUCT’s pipeline, we generated align-

ments and coevolution-based features for the 24 protein targets (with

full targets as input) containing the 30 free-modeling domains, pre-

dicted contacts for the targets, and evaluated the predictions at the

domain level. For comparison, on the same dataset, we also predicted

contacts using the publicly available MetaPSICOV method with default

options, where alignments were generated using HHblits15 with the

coverage threshold parameter set to 60%. Moreover, we compared our

results with the best performing group in the CASP11 contact predic-

tion category, CONSIP2,22 on the same dataset. The mean precisions

of top L/5 long-range contacts predicted by MetaPSICOV, CONSIP2,

and MULTICOM-CONSTRUCT are 29%, 29%, and 34.4%, respectively

(see Table 1). The improvement of our method is significant according

to paired t test of the difference in precision (P values50.03). It is

important to note that the same protein sequence database was used

with MetaPSICOV and our method for a fair comparison. On average,

our method can increase the number of sequences (N) in the alignment

to 1546 (from 152), and the number of effective sequences (Meff) to

222 (from 69), which is probably the primary contributor for the

improvement (Table 1). For these free-modeling domains, the Pearson’s

correlation coefficient between the precision of top L/5 long-range

contacts predicted by MULTICOM-CONSTRUCT and the logarithm of

the number of effective sequences (log(Meff)) in alignments is 0.60,

which highlights the importance of the depth of multiple sequence

alignments for contact quality. It is also important to note that the

number of effective sequences was calculated at the domain level.

Pearson’s correlation, when calculated using the number of effective

sequences for the whole target alignment, gives much lower coeffi-

cients. This is because a high effective sequence number at whole tar-

get level does not guarantee a high number of effective sequences for

each domain of a multi-domain target, as a sequence in an alignment

may only cover a portion of the target.

3.2 | Performance on CASP12 dataset

Table 2 summarizes the performance of our three methods on the subset

of 38 CASP12 domains classified as free modeling. The mean precision of

top L/5 long-range contacts predicted by our three methods

MULTICOM-NOVEL, MULTICOM-CONSTRUCT, and MULTICOM-

CLUSTER are 25.4%, 41.6%, and 41.7%, respectively. MULTICOM-

CONSTRUCT and MULTICOM-CLUSTER, which rely on our deep multi-

ple sequence alignment generation algorithm and coevolution-based fea-

tures, have much higher mean precision compared to the baseline

sequence-based machine learning method MULTICOM-NOVEL without

using coevolution features, suggesting the enhanced coevolution features

is a major contributor to the improved precision. On this free-modeling

dataset, our contact combination method, MULTICOM-CLUSTER, has

improved performance on two domains T0869-D1 and T0923-D1,

although, on average, its performance is similar to the MULTICOM-

CONSTRUCT method. For 23 out of these 38 domains, our deep align-

ment generation algorithm concluded with alignments generated by

JackHMMER at high e-value threshold of 1, suggesting that most of the

domains in the free-modeling dataset did not have sufficient significantly

homologous sequences with high coverage. The low-quality alignments,

generated by JackHMMER at e-value threshold of 1, have the number of

effective sequences ranging from 1 to 1331 (with mean as 107 and

median as 31), and the precision of MULTICOM-CONSTRUCT’s contact

predictions for these domains ranges from 3% to 95%. This suggests that

high e-value thresholds do not always necessarily generate poor align-

ments, but rather lead to alignments of variable quality, some of which

are useful for contact prediction.

On the full dataset consisting of all 94 CASP12 domains, the

mean precision of top L/5 long-range contacts for MULTICOM-

NOVEL, MULTICOM-CONSTRUCT, and MULTICOM-CLUSTER are

25.8%, 50.3%, and 50.1%, respectively (see Table S1 for detailed

results). Higher precisions on the complete dataset is due to the fact

that the mean Meff for all the targets is 1619, >253 for the free-

modeling targets. Finally, the same as on CASP11 free-modeling

dataset, we observed a Pearson’s correlation coefficient of 0.66

between the precision of top L/5 long-range contacts predicted by

MULTICOM-CONSTRUCT and the logarithm of the number of

effective sequences (Meff) on the CASP12 full dataset. Since it is rel-

evant to compare the performance of all three methods on the tar-

get domains for which no sufficient number of sequences in

alignments were found, we selected six free-modeling domains for

which our method generated <20 sequences in the alignments

(see Table S2). For these targets, while MULTICOM-NOVEL and

MULTICOM-CONSTRUCT have average precision of 15% and

15.9%, respectively, the contact combination made by MULTICOM-

CLUSTER has average precision of 16.7%, showing a slight

improvement.

3.3 | Significance of coevolution-based features

and machine learning integration

If reliable and deep multiple sequence alignments are available, two-

dimensional pairwise features (contact probabilities or scores) predicted

by coevolution-based methods are a key factor for high accuracy in

final contact prediction. To study the significance of these features, we

evaluated the precision of the coevolution-based contacts predicted by
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PSICOV, CCMpred, and FreeContact separately, and compared them

with the final prediction made by MULTICOM-CONSTRUCT. Excluding

some targets for which PSICOV failed to converge within the 5-hour

time limit and some additional targets for which no >5 homologous

sequences could be found, on the remaining 70 structural domains,

CCMpred, FreeContact, and PSICOV have mean precision of 41.6%,

36.3%, and 34.1%, respectively, for top L/5 long-range contacts. When

top L/2 contacts are evaluated, the similar trend is observed for the

three methods with the mean precision of 32.6% for CCMpred, 28.3%

for FreeContact, and 25.4% for PSICOV, suggesting that the most

accurate single coevolution-based predictor is CCMpred followed by

FreeContact and PSICOV (see Table 3). These precisions are much

TABLE 1 Top L/5 long-range contacts predicted by MULTICOM-CONSTRUCT method compared with the top L/5 contacts predicted using
the default MetaPSICOV method and the CONSIP2 method, on the 30 CASP11 free-modeling domainsa

MetaPSICOV CONSTRUCT CONSIP2
Domain Ntarget Meffdomain PL/5 Ntarget Meffdomain PL/5 PL/5

T0761-D1 1 1 0.0 4 2 0.0 5.6

T0761-D2 1 1 13.0 4 2 13.0 8.7

T0763-D1 3 2 30.8 7 3 15.4 46.2

T0767-D2 109 58 66.7 774 88 66.7 58.3

T0771-D1 9 4 26.7 32 11 16.7 10.0

T0777-D1 55 25 15.9 747 41 18.8 23.2

T0781-D1 2 2 10.0 40 15 2.5 5.0

T0785-D1 1 1 4.6 6 2 4.6 18.2

T0789-D1 274 133 44.8 2465 484 62.1 51.7

T0789-D2 274 139 44.0 2465 522 60.0 28.0

T0790-D1 276 140 44.4 1829 440 59.3 44.4

T0790-D2 276 136 26.9 1829 455 69.2 26.9

T0791-D1 265 109 63.3 2488 401 66.7 53.3

T0791-D2 265 118 35.7 2488 481 75.0 42.9

T0794-D2 258 121 52.9 1653 176 38.2 26.5

T0806-D1 766 369 62.8 1130 306 70.6 84.3

T0808-D2 121 29 27.8 1257 92 27.8 35.2

T0810-D1 49 24 21.7 8669 1147 21.7 17.4

T0814-D1 118 106 25.9 1404 145 48.2 37.0

T0814-D2 118 107 69.6 1404 174 73.9 82.6

T0820-D1 1 1 5.6 1 1 5.6 5.6

T0824-D1 79 32 36.4 1257 254 72.7 45.5

T0827-D2 680 229 26.7 3164 558 20.0 10.0

T0831-D2 189 100 10.3 4659 242 7.7 7.7

T0832-D1 5 2 2.4 83 26 4.8 2.4

T0834-D1 42 21 0.0 269 48 0.0 5.0

T0834-D2 42 16 5.9 269 45 5.9 17.7

T0836-D1 223 26 36.6 2627 167 68.3 43.9

T0837-D1 32 8 37.5 132 10 37.5 29.2

T0855-D1 11 7 21.7 3234 322 0.0 17.4

Average 152 69 29.0 1546 222 34.4 29.7

aNtarget is the number of sequence in the alignment which is generated with the target sequence as input. Meffdomain is number of effective sequences
in the alignment when alignments are trimmed to match the residues of the native structural domain. PL/5 refers to the precision of top L/5 long-range
contacts.
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TABLE 2 Comparison of top L/5 long-range contacts predicted by our three methods, MULTICOM-NOVEL, MULTICOM-CONSTRUCT, and
MULTICOM-CLUSTER for the 38 free-modeling structural domains using precision measurea

Target FM Domain L Alignment Ntarget Meffdomain CONSTRUCT CLUSTER NOVEL

T0859 T0859-D1 133 jhm-e-0 2 1 4.4 4.4 0.0

T0862 T0862-D1 239 jhm-e-0 163 31 26.3 26.3 21.1

T0863 T0863-D1 670 jhm-e-0 453 73 2.6 2.6 5.1

T0863 T0863-D2 670 jhm-e-0 453 54 4.2 4.2 4.2

T0864 T0864-D1 246 jhm-e-0 526 134 64.0 64.0 32.0

T0866 T0866-D1 183 hhb-cov75 1388 560 100.0 100.0 14.3

T0869 T0869-D1 120 jhm-e-0 17 12 42.9 52.4 47.6

T0870 T0870-D1 138 jhm-e-0 137 81 16.0 16.0 40.0

T0878 T0878-D1 358 jhm-e-0 856 250 42.0 42.0 26.1

T0880 T0880-D2 193 jhm-e-0 2 1 25.0 21.9 18.8

T0886 T0886-D1 346 jhm-1e-40 3013 1182 78.6 78.6 7.1

T0886 T0886-D2 346 jhm-1e-40 3013 1837 88.5 88.5 23.1

T0888 T0888-D1 121 jhm-e-0 2 1 8.0 0.0 0.0

T0890 T0890-D2 191 jhm-e-0 70 17 13.6 13.6 9.1

T0892 T0892-D2 193 jhm-e-0 579 202 54.6 54.6 63.6

T0894 T0894-D1 324 jhm-e-0 438 61 11.1 11.1 55.6

T0896 T0896-D3 486 jhm-e-0 2295 7 12.1 12.1 9.1

T0897 T0897-D1 285 jhm-e-0 130 10 7.1 7.1 17.9

T0897 T0897-D2 285 jhm-e-0 130 57 52.0 52.0 20.0

T0898 T0898-D1 169 jhm-1e-4 50000 389 4.6 4.6 13.6

T0899 T0899-D1 423 jhm-1e-10 6580 125 71.2 71.2 40.4

T0899 T0899-D2 423 jhm-1e-10 6580 31 44.4 44.4 33.3

T0900 T0900-D1 106 jhm-e-0 16243 1331 95.2 95.2 71.4

T0901 T0901-D2 328 hhb-cov50 5167 127 64.3 64.3 42.9

T0904 T0904-D1 341 jhm-1e-10 23741 609 72.6 72.6 29.4

T0905 T0905-D1 353 jhm-1e-10 8623 346 79.6 79.6 63.3

T0905 T0905-D2 353 jhm-1e-10 8623 88 42.9 42.9 42.9

T0907 T0907-D3 315 jhm-e-0 219 1 79.2 79.2 41.7

T0912 T0912-D3 624 jhm-1e-20 7240 426 42.9 42.9 4.8

T0914 T0914-D1 337 jhm-e-0 325 70 6.3 6.3 31.3

T0914 T0914-D2 337 jhm-e-0 325 33 6.1 6.1 15.2

T0915 T0915-D1 161 jhm-e-0 34 21 48.4 45.2 29.0

T0918 T0918-D1 546 jhm-1e-20 3517 356 77.3 77.3 40.9

T0918 T0918-D2 546 jhm-1e-20 3517 487 88.0 88.0 20.0

T0918 T0918-D3 546 jhm-1e-20 3517 513 66.7 66.7 0.0

T0923 T0923-D1 409 jhm-e-0 10 7 12.1 19.0 22.4

T0941 T0941-D1 470 jhm-e-0 3 1 2.9 2.9 1.5

T0946 T0946-D1 292 hhb-cov50 3170 80 25.0 25.0 6.3

Average 253 41.6 41.7 25.4

aL, Ntarget, and Meffdomain stand for the length of the target sequence, number of sequence in the alignment for the whole target sequence, and the
number of effective sequences in the alignment when alignments are trimmed to match the residues of the native structural domain, respectively. The
last three columns show the precision of top L/5 long-range contacts for the three methods. The “Alignment” column shows the method and parameter
used to generate the alignment, where “jhm” stands for JackHMMER and “hhb” stands for HHblits.
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TABLE 3 Precision of top L/5 and L/2 contacts predicted for CASP12 structural domains using PSICOV, FreeContact, and CCMpred, the
maximum precision of the three methods, and the MULTICOM-CONSTRUCT method of using machine learning to integrate multiple coevolu-
tion featuresa

PSICOV FreeContact CCMpred Maximum
MULTICOM-CON-
STRUCT

Domain L/5 L/2 L/5 L/2 L/5 L/2 L/5 L/2 L/5 L/2

T0861-D1 79.0 54.5 79.0 66.0 83.9 77.6 83.9 77.6 85.5 81.4

T0862-D1 0.0 0.0 0.0 0.0 15.8 6.4 15.8 6.4 26.3 12.8

T0863-D1 2.6 3.1 0.0 0.0 2.6 2.1 2.6 3.1 2.6 7.2

T0863-D2 1.4 1.7 0.0 0.0 0.0 0.6 1.4 1.7 4.2 3.4

T0864-D1 20.4 14.6 42.9 25.2 55.1 26.8 55.1 26.8 65.3 45.5

T0866-D1 95.2 63.5 81.0 63.5 95.2 71.2 95.2 71.2 100.0 78.9

T0868-D1 13.0 10.3 4.4 5.2 17.4 13.8 17.4 13.8 82.6 60.3

T0869-D1 14.3 12.5 0.0 3.9 19.1 13.5 19.1 13.5 42.9 36.5

T0870-D1 16.0 9.7 12.0 6.5 16.0 9.7 16.0 9.7 16.0 8.1

T0871-D1 73.4 50.0 57.8 38.8 81.3 61.3 81.3 61.3 93.8 79.4

T0872-D1 27.8 18.2 33.3 18.2 33.3 22.7 33.3 22.7 66.7 31.8

T0873-D1 43.5 26.8 66.3 55.4 66.3 58.9 66.3 58.9 82.6 70.6

T0877-D1 10.7 7.0 7.1 5.6 10.7 8.5 10.7 8.5 17.9 21.1

T0878-D1 27.5 18.6 39.1 21.5 36.2 20.4 39.1 21.5 42.0 29.7

T0879-D1 81.8 70.0 75.0 70.9 77.3 73.6 81.8 73.6 97.7 85.5

T0881-D1 5.0 4.0 2.5 5.0 5.0 5.0 5.0 5.0 0.0 3.0

T0882-D1 6.3 5.0 12.5 7.5 18.8 10.0 18.8 10.0 6.3 10.0

T0884-D1 14.3 13.9 7.1 5.6 7.1 8.3 14.3 13.9 7.1 13.9

T0885-D1 56.5 35.1 39.1 33.3 47.8 33.3 56.5 35.1 95.7 61.4

T0886-D1 71.4 57.1 78.6 68.6 78.6 77.1 78.6 77.1 78.6 77.1

T0886-D2 80.0 50.0 88.0 60.9 92.0 60.9 92.0 60.9 88.0 82.8

T0889-D1 89.6 78.3 87.5 80.8 87.5 80.8 89.6 80.8 95.8 90.8

T0890-D1 25.0 24.4 12.5 9.8 12.5 7.3 25.0 24.4 43.8 22.0

T0890-D2 19.1 11.3 0.0 0.0 0.0 5.7 19.1 11.3 14.3 11.3

T0891-D1 63.6 41.1 59.1 42.9 68.2 46.4 68.2 46.4 90.9 87.5

T0892-D1 21.4 14.3 42.9 22.9 50.0 25.7 50.0 25.7 35.7 28.6

T0892-D2 22.7 16.4 31.8 18.2 18.2 14.6 31.8 18.2 54.6 49.1

T0893-D1 0.0 2.7 0.0 5.4 6.7 8.1 6.7 8.1 6.7 8.1

T0893-D2 91.2 80.0 91.2 80.0 94.1 83.5 94.1 83.5 97.1 89.4

T0894-D1 11.1 11.1 27.8 15.6 22.2 13.3 27.8 15.6 11.1 13.3

T0894-D2 18.2 18.5 27.3 14.8 36.4 18.5 36.4 18.5 54.6 33.3

T0895-D1 4.2 5.0 4.2 5.0 12.5 5.0 12.5 5.0 33.3 30.0

T0897-D1 0.0 0.0 0.0 1.5 0.0 0.0 0.0 1.5 7.1 7.3

T0897-D2 24.0 22.6 20.0 14.5 32.0 24.2 32.0 24.2 52.0 25.8

T0898-D1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 7.6

T0898-D2 0.0 0.0 9.1 14.3 9.1 3.6 9.1 14.3 9.1 10.7

T0899-D1 26.9 20.8 26.9 19.2 28.9 15.4 28.9 20.8 71.2 49.2

(Continues)
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higher than the average precision (25.4%) of our baseline MULTICOM-

NOVEL method that does not use any coevolution-based features as

input. These results indicate that the coevolution-based features are

crucial for accurate contact prediction.

In Table 3, MULTICOM-CONSTRUCT has much higher mean preci-

sion of 56.3% for top L/5 long-range predictions (46.2% for top L/2),

compared to each of the three individual coevolution-based features

above. If we selected the best contact predictions made by the three

TABLE 3 (Continued)

PSICOV FreeContact CCMpred Maximum
MULTICOM-CON-
STRUCT

Domain L/5 L/2 L/5 L/2 L/5 L/2 L/5 L/2 L/5 L/2

T0899-D2 16.7 13.6 5.6 6.8 11.1 11.4 16.7 13.6 44.4 36.4

T0900-D1 50.0 43.1 50.0 45.1 65.0 56.9 65.0 56.9 95.0 80.4

T0901-D1 62.2 46.4 62.2 47.3 60.0 48.2 62.2 48.2 84.4 67.0

T0901-D2 14.3 11.4 7.1 5.7 0.0 2.9 14.3 11.4 64.3 40.0

T0902-D1 67.4 56.0 73.9 60.3 67.4 65.5 73.9 65.5 93.5 88.8

T0903-D1 27.7 22.8 1.5 4.3 27.7 18.5 27.7 22.8 98.5 80.9

T0904-D1 50.0 31.8 24.0 16.7 70.0 44.4 70.0 44.4 74.0 48.4

T0905-D1 33.3 23.1 41.7 26.5 41.7 26.5 41.7 26.5 79.2 54.6

T0905-D2 30.8 24.2 0.0 6.1 7.7 12.1 30.8 24.2 46.2 48.5

T0909-D1 27.0 15.1 20.3 19.7 44.3 28.4 44.3 28.4 43.1 32.7

T0911-D1 65.9 50.5 78.1 64.7 72.0 69.1 78.1 69.1 86.6 76.0

T0912-D1 20.5 20.2 84.3 69.1 78.3 63.8 84.3 69.1 91.6 82.1

T0912-D2 29.4 18.5 58.8 42.9 58.8 47.6 58.8 47.6 41.2 33.3

T0912-D3 0.0 0.0 14.3 15.4 23.8 17.3 23.8 17.3 42.9 28.9

T0913-D1 48.5 34.3 64.7 48.5 79.4 57.4 79.4 57.4 69.1 62.1

T0914-D1 6.3 5.1 3.1 2.5 6.3 2.5 6.3 5.1 6.3 8.9

T0914-D2 9.4 7.4 3.1 2.5 6.3 2.5 9.4 7.4 6.3 4.9

T0915-D1 6.5 6.5 6.5 2.6 0.0 2.6 6.5 6.5 48.4 27.3

T0917-D1 82.1 70.4 76.9 66.3 89.7 79.6 89.7 79.6 97.4 84.7

T0918-D1 40.9 27.8 50.0 40.7 59.1 50.0 59.1 50.0 77.3 59.3

T0918-D2 48.0 29.0 60.0 48.4 68.0 58.1 68.0 58.1 88.0 71.0

T0918-D3 25.0 15.3 75.0 47.5 75.0 52.5 75.0 52.5 66.7 45.8

T0920-D1 85.9 65.8 87.5 75.8 89.1 78.3 89.1 78.3 93.8 88.8

T0920-D2 0.0 0.0 2.3 1.8 4.6 2.7 4.6 2.7 22.7 18.2

T0921-D1 64.3 34.8 60.7 46.4 57.1 39.1 64.3 46.4 96.4 76.8

T0922-D1 26.7 27.0 33.3 29.7 33.3 32.4 33.3 32.4 53.3 46.0

T0928-D1 52.9 36.3 72.1 43.3 66.2 51.5 72.1 51.5 79.4 63.2

T0944-D1 70.6 44.1 62.8 49.6 68.6 58.3 70.6 58.3 88.2 66.9

T0945-D1 29.3 25.0 46.7 28.2 73.3 53.2 73.3 53.2 86.7 64.9

T0946-D1 12.5 10.0 0.0 2.5 25.0 17.5 25.0 17.5 25.0 30.0

T0946-D2 66.7 52.8 66.7 50.9 61.9 57.6 66.7 57.6 81.0 73.6

T0947-D1 57.1 36.4 65.7 46.6 77.1 50.0 77.1 50.0 80.0 67.1

T0948-D1 3.3 4.0 16.7 9.3 6.7 6.7 16.7 9.3 6.7 10.7

Mean 34.1 25.4 36.3 28.3 41.6 32.6 44.2 34.1 56.3 46.2

This dataset excludes the cases in where PSICOV failed to generate any results within the time limit.
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coevolution-based predictions to evaluate for each domain, the mean

precision (called maximum in Table 3) is 44.2% for top L/5 contacts,

which is only slightly (2.6%) better than the performance of the best indi-

vidual coevolution-based feature predictor CCMpred, but is still much

lower than the mean precision 56.3% of MULTICOM-CONSTRUCT.

These results indicate that, in addition to coevolution-based features

being important, the machine learning approaches of integrating these

coevolution-based features with the traditional sequence-based features

are also very important. Analyzing the predictions made by MULTICOM-

CONSTRUCT, we only found two out of 70 domains (T0918-D3

and T0912-D2) for which the machine learning integration had failed to

perform better than an individual coevolution-based feature. Upon

inspecting the three-dimensional structures of these two domains, how-

ever, we find both of them have the middle region of the structure miss-

ing, which might cause the failure of the machine learning integration.

Generally speaking, in MULTICOM-CONSTRUCT, the neural network-

based combination of the multiple coevolution features and traditional

features almost always performs better than individual coevolution-

based features. Taking domain T0868-D1 as an example, when top L/5

long-range contacts are evaluated, the predictions by PSICOV,

CCMpred, and FreeContact have precision of 13%, 4.4%, and 17.4%,

respectively, the final prediction made by MULTICOM-CONSTRUCT,

however, boosts the precision to 82.6%. As shown Figure 1, the contacts

predicted by MULTICOM-CONSTRUCT (Figure 1A) are much more

near-native compared to the individual coevolution-based predictions.

3.4 | Relationship between number of effective

sequences and precision of contact prediction

Study of the relationship between the number of effective sequences

(Meff) in the alignment and the precision of the predicted contacts can

provide useful insights on estimating the accuracy of the predicted

contacts. A direct comparison between Meff and precision is less mean-

ingful if Meff is calculated for the whole target sequence and the con-

tact precision are evaluated at the domain level. Hence, we also

calculated Meff using our Meff calculation method at the domain level.

Figure 2 plots the precisions of top L/5 contact predictions of the

domains in CASP12 dataset against the logarithm of their number of

sequences (N) in the alignments generated for the whole targets and

the logarithm of the number of effective sequences (Meff) at the

domain level, respectively. The Pearson’s correlation between the pre-

cision and log(N) is 0.47, lower than 0.66 between the precision and

log(Meff) at the domain level. According to the plot between contact

prediction precision andMeff in Figure 2, it can be inferred that multiple

sequence alignments with at least around 100 effective sequences at

domain level has a good chance to produce 50% precise contact

FIGURE 1 Contact map visualization of top L contacts predicted by MULTICOM-CONSTRUCT (A), PSICOV (B), FreeContact (C), and
CCMpred (D) for the target domain T0868-D1. Green dots in upper triangles represent contacts in the native structure and red dots in
lower triangles denote the contact predictions [Color figure can be viewed at wileyonlinelibrary.com]
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predictions, whereas, when the Meff is >1000, the precision has a high

chance to reach above 70%-80%, for L/5 long-range contacts.

However, there are some exceptional cases where the contact pre-

diction precision is very low even though the number of sequences in

the multiple sequence alignment is high. MULTICOM-CONSTRUCT’s

contact precision for top L/5 long-range contacts is only 4.6% for the

domain T0898-D1, whose number of sequences in the alignment is

very high (�50 K) and the number of effective sequences is 389.

When checking the quality of coevolution-based features of this

domain, we observed that all individual coevolution-based features also

had low-quality contact predictions. However, in general, 389 effective

sequences should be sufficient to produce coevolution-based features

and final contact predictions of decent quality. After checking the

sequence alignment of this domain, we find that most of the sequences

have gaps for the first domain (that is, T0898-D1) and cover only the

second domain of the target, such that the Meff for the second domain

is much higher, 1648. Moreover, although the multiple sequence align-

ment has many sequences, most sequences are extremely short, having

only around 30 valid residues (non-gaps), and are not useful for predict-

ing long-range contacts with sequence separation �24. To verify our

observation through Meff calculations, we modified our program to cal-

culate Meff so that aligned gaps were also considered as a match (gap

was considered as 21st amino acid) and calculated new Meff. For this

domain, such a gap-considered Meff is just 2, suggesting that the poor

coverage is the cause of the poor contact prediction. Another excep-

tional case is MULTICOM-CONSTRUCT’s precision for top L/5 long-

range contacts is only 7% for the domain T0893-D1, although the mul-

tiple sequence alignment generated with 75% coverage threshold has

63 308 sequences with Meff of 17 939. For this domain, all standard

coevolution-based features also have poor predictions. We suspect

one reason for the low contact precision is the unusual shape of the

domain as its tertiary structure consists of just two long helices side by

side, whereas the other domain (T0893-D2) of regular shape in the

same target has a much higher Meff resulting in long-range contact pre-

dictions of 97% precision. These exceptions suggest that, sometimes,

coevolution-based contact prediction methods can fail to produce

accurate contacts even in the presence of a large number of sequences

in the alignments, possibly because many of the sequences in the align-

ment are false positive homologous sequences or do not align well

with target domains. Therefore, in addition to alignment depth as

measured by number of (effective) sequences, alignment quality needs

to be considered for assessing the accuracy of coevolution-based

contact prediction.

3.5 | Impact of alignment parameters on the quality

and depth of multiple sequence alignments

Our alignment generation algorithm gradually switches to pick lower

quality multiple sequence alignments when high-coverage and highly

homologous sequences cannot be found. For deciding when to use a

lower quality alignment, we set a threshold of minimum 2.5 L sequen-

ces in the alignment. We run HHblits with three pre-specified coverage

options and JackHMMER with six different e-value thresholds. For

example, when HHblits search with 75% coverage option produces an

alignment having <2.5 L sequences, we check the output of the search

with 68% coverage, and so on. To analyze if these parameters were

well tuned, we studied two subsets—(1) all the targets where we used

the results of HHblits search with 75% coverage, and (2) all the targets

where we used JackHMMER with e-value threshold of 1E240. For

these two sets of targets, to study how the various parameters influ-

ence the quality of the multiple sequence alignment (and ultimately the

quality of contact prediction), we generated multiple sequence align-

ment with all kinds of parameter settings. In other words, for the first

subset where we had chosen HHblits alignments with 75% coverage in

CASP12 experiment, we regenerated the alignments with all three cov-

erage options (60%, 68%, and 75%) and predicted contacts using the

coevolution-based method CCMpred, respectively. For this set,

surprisingly, the precision of contacts predicted using the alignments

generated with coverage parameter of 60% is slightly higher, on

average, than the ones predicted using the coverage parameter of

FIGURE 2 The precision of top L/5 long-range contacts predicted by MULITCOM-CONSTRUCT is plotted against the logarithm of number
of sequences (N) in the alignments generated for the whole targets (left) and the logarithm of number of effective sequences (Meff) calcu-
lated for the domains (right) on the CASP12 dataset. The Pearson’s correlation coefficients of the precision with log(N) and log(Meff) are
0.47 and 0.66, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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75%. The average precisions of top L/2 long-range contacts for the

three coverage thresholds (60%, 68%, and 75%) are 61.8%, 60.7%, and

58.1%, respectively (see Table S3). This is true for both multi-domain

and single-domain targets in the dataset, suggesting that only one

HHblits search with coverage option of 60% is generally sufficient to

generate good results. Similarly, for the second set of targets where we

had used JackHMMER with e-value threshold of 1E240, we regener-

ated the alignments with all six e-value thresholds (1, 1E24, 1E210,

1E220, 1E230, and 1E240) and predicted contacts using the

coevolution-based method CCMpred. On this dataset, the best preci-

sion is obtained when alignments are selected with less stringent crite-

ria of 1E210 or 1E220 e-value threshold. While the mean precision for

these domains is 61.8% and 61.7% at e-value threshold of 1E230 and

1E240, the precision increases to 63.5% at the threshold of 1E210 and

1E220 (see Table S4). These results suggest that JackHMMER searches

with e-value threshold of 1E230 and 1E240 need not to be run. In addi-

tion to these analyses on the contact predictions of CCMpred, we also

predicted contacts using FreeContact method and observed similar

results confirming our conclusion.

3.6 | Impact of the convergence of coevolution

methods on contact prediction

During our experiment, the coevolution-based tool PSICOV sometime

could not converge within several hours, either because there were too

few sequences or too many sequences in the alignment or because the

input sequence was long. Hence, we ran three PSICOV jobs with differ-

ent parameters in parallel and picked the one that finished within the

waiting time limit, based on a preferred order. The preferred order for

selecting PSICOV predictions was “d50.03” followed by “r50.001”

and “r50.01”. To verify if this preference order was effective, from

the dataset of all the targets for which native structures were available

for us, we selected the targets for which a multiple sequence alignment

with at least five sequences could be generated and for which all three

PSICOV jobs converged without any time limit constraint, resulting in a

dataset of 60 domains. On this dataset, the mean precision of top L/5

long-range contacts for the options “d50.03”, “r50.001”, and

“r50.01” are 35.4%, 33.3%, and 18.1%, respectively (see Table S5).

The relatively higher precision of the option “d50.03” and much lower

precision of the option “r50.01” validates that our preference order

is fine.

Further, to check how much accuracy was lost due to the 5-hour

time limit, from the above set of 60 domains, we selected the domains

for which we could not select the first PSICOV job (with d50.03

option) because of the time limit and had instead selected the second

PSICOV job (with r50.001 option). This resulted in a set of 10

domains for which the mean precision of top L/5 and L/2 long-range

contacts were 57.5% and 41% when the contacts were predicted with

the “r50.001” option. However, had we waited for long enough to let

the first set of jobs finish for these targets, the mean precision would

have increased to 64.9% and 46.9% for top L/5 and L/2 contacts,

respectively.

Overall, the experiments show that generating reliable multiple

sequence alignments is not a straightforward process. The definition of

“a useful alignment” also depends upon the coevolution-based method

used to predict contacts from the alignment. While some of these

FIGURE 3 Visualization of the top L contacts predicted using MULTICOM-CONSTRUCT and reconstructed model for the domain T0900-
D1. Chord diagram for the long-range contacts in the native structure are shown in (A) and the top L contacts predicted by MULTICOM-
CONSTRUCT shown in (B). MULTICOM-CONSTRUCT predicted contacts are highlighted in the native structure with actual distances
between the residues shown in black (C) and the reconstructed structure (in orange) superimposed with the native structure (in green) is
shown in (D)
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methods are resource expensive and take longer to run, other methods

are relatively fast and are almost independent of the alignment size and

length of the protein sequence. Hardware resources and the waiting

time limit available for coevolution feature generation can influence

the decision to generate and pick the best alignments. In general,

coevolution-based methods take longer to run if the size of alignment

(number of sequences in alignment) is big. In some case, CCMpred can

run on CPUs for more than a day and PSICOV can run for days. If the

hardware resources are limited, it is appropriate to attempt to obtain a

reasonable, but less extensive alignment before running these tools.

For instance, if HHBlits coverage option of 75% produces 90 K

sequences, it may be appropriate to increase the coverage threshold

to a higher value like 80% to obtain an alignment of smaller size

for which the coevolution-based methods can make predictions within

a time limit.

3.7 | Three-dimensional model reconstruction

using the predicted contacts

The primary objective of predicting contacts is to use them for three-

dimensional structure prediction. In this context, with the contacts pre-

dicted by MULTICOM-CONSTRUCT, we built three-dimensional mod-

els using our fragment-free ab initio folding tool CONFOLD 1.014 to

study the usefulness of the predicted contacts. CONFOLD is guided by

predicted contacts and secondary structures only, and hence is a good

method to build models to study the independent value of the pre-

dicted contacts. Using CONFOLD, we built five models for each target

in the CASP12 dataset with five sets of contacts—top 0.8 L, 1.0 L,

2.0 L, 3.0 L, and 4.0 L contacts, without removing short-range or

medium-range contacts. To be consistent with other similar works, we

built models for the whole target sequence first, without using any

knowledge of domains, and then evaluated the predicted models

against structural domains. Furthermore, since the number of contacts

selected to build models greatly influences the quality of the recon-

structed models, we selected “best of five” models for our analysis. Our

reconstruction results (summarized in Table S6), shows that in general,

predicted contacts and secondary structures alone could recover the

folds of 15 out of the 87 domains, that is, with TM-score23 >0.5. We

investigated structural domains for which the accuracy of the models

was low, and found that many of them are from multi-domain proteins,

which are hard for all ab initio methods to fold as whole. This suggests

that dividing multi-domain proteins into individual domains before fold-

ing them with predicted contacts is desirable. For each of the structural

domains, we also studied the relationship between the best recon-

structed models and the quality of the contact sets selected for the

reconstruction. The Pearson’s correlation coefficient between the TM-

score of the reconstructed models and precision of long-range,

medium-range, and short-range contacts are 0.60, 0.42, and 0.34,

respectively, indicating long-range contacts are most useful for tertiary

structure modeling. We also find that the proportion of the number of

long-range, medium-range, and short-range contacts in the native

structures is more similar to the proportion of the contacts that were

used to build the best models, suggesting that contact-selection that is,

the number of short-range, medium-range, and long-range contacts to

select for building models, is important for accurate reconstruction.

As an example, we discuss the reconstruction of a free-modeling

domain T0900-D1. T0900-D1 consisting of 102 residues is a compli-

cated beta-sheet domain having 194 long-range, 31 medium-range,

and 27 short-range contacts. Of the five sets of contacts selected for

reconstruction (0.8 L, 1 L, 2 L, 3 L, and 4 L), the second set of top 1 L

contacts generated best models for this domain. This top 1 L set of 60

long-range, 30 medium-range, and 13 short-range contacts generated

the top model with 0.43 TM-score, almost recovering the fold of the

protein. Despite predicted contacts being very precise (that is, top L/5

precision of 95% and top L precision of 60%) for this domain, the less

accurate reconstruction can be attributed to the poor distribution of

predicted contacts used to build the models (see Figure 3A,B). The cor-

rectly predicted contacts only cover a portion of the structure of this

domain. In a different experiment, we reconstructed this domain using

all true contacts and obtained a model with 0.9 TM-score and 1.4 Å

RMSD, which is near native. These examples suggest that the gap

between the reconstruction accuracy of using true contacts and that of

using only predicted contacts alone (that is, without using other infor-

mation like structural templates or fragments), is still wide and the

contact-based protein folding requires more research.
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