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Abstract

Background: Reconstructing three-dimensional structures of chromosomes is useful for visualizing their shapes in a
cell and interpreting their function. In this work, we reconstruct chromosomal structures from Hi-C data by translating
contact counts in Hi-C data into Euclidean distances between chromosomal regions and then satisfying these
distances using a structure reconstruction method rigorously tested in the field of protein structure determination.

Results: We first evaluate the robustness of the overall reconstruction algorithm on noisy simulated data at various
levels of noise by comparing with some of the state-of-the-art reconstruction methods. Then, using simulated data, we
validate that Spearman’s rank correlation coefficient between pairwise distances in the reconstructed chromosomal
structures and the experimental chromosomal contact counts can be used to find optimum conversion rules for
transforming interaction frequencies to wish distances. This strategy is then applied to real Hi-C data at chromosome
level for optimal transformation of interaction frequencies to wish distances and for ranking and selecting structures.
The chromosomal structures reconstructed from a real-world human Hi-C dataset by our method were validated by
the known two-compartment feature of the human chromosome organization. We also show that our method is
robust with respect to the change of the granularity of Hi-C data, and consistently produces similar structures at
different chromosomal resolutions.

Conclusion: Chromosome3D is a robust method of reconstructing chromosome three-dimensional models using
distance restraints obtained from Hi-C interaction frequency data. It is available as a web application and as an open
source tool at http://sysbio.rnet.missouri.edu/chromosome3d/.

Keywords: Genome structure, Chromosome structure, Three-dimensional modelling, Distance geometry, Simulated
annealing

Background
Three-dimensional (3D) chromosome structures provide
insights into cellular processes such as the regulation of
gene expression, DNA repair and replication and methy-
lation. Traditionally, fluorescence in situ hybridization
(FISH) is used to study the 3D organization of chromo-
somes and genomes [1–3]. However, due to the low
throughput and low resolution of FISH data, it cannot

be used to study the organization of chromosomes and
genomes at a finer and larger scale. Recently, chromo-
some conformation capture techniques like Hi-C [4] and
TCC [5] have emerged as powerful techniques to capture
the proximity between chromosomal fragments and to
study the 3D organization of chromosomes and genomes.
The chromosomal contacts generated by Hi-C data can be
used to infer 3D structures of chromosomes and genomes.
A typical Hi-C experiment produces a matrix of interaction
frequencies (IFs) between pairs of loci at a granularity de-
fined in terms of resolution. An interaction frequency
matrix is often termed as chromosomal contact matrix.

* Correspondence: chengji@missouri.edu
†Equal contributors
Computer Science Department, University of Missouri, Columbia, MO 65211,
USA

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Adhikari et al. BMC Genomics  (2016) 17:886 
DOI 10.1186/s12864-016-3210-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3210-4&domain=pdf
http://sysbio.rnet.missouri.edu/chromosome3d/
mailto:chengji@missouri.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The bigger the IF between two loci, the higher probability
they are close in the 3D space.
Several methods have been developed to reconstruct

3D chromosome and genome structures from contact
matrices [6–13]. Many of these are distance-based
methods, which translate the IF values in a contact
matrix into Euclidean distances, called wish-distances
and then try to place the loci in three-dimensional space
in order to satisfy these distances. The distance satisfac-
tion problem is often formulated as a computational
optimization problem. Since Hi-C contact matrices are
obtained from a population of cells whose chromosomal
structures may vary and the exact relationship between
IFs and physical distances between loci is unknown,
wish-distances often conflict with each other and cannot
be satisfied accurately or completely. Moreover, because
of conflicting distances, there is not always a unique solu-
tion to the optimization problem. As a result, some
methods generate an ensemble of structures that conform
with a contact matrix [5, 6, 8], while others produce one
consensus structure for each matrix [7, 9–12].
Inspired by the computational techniques such as

Crystallography & NMR System (CNS) suite [14–18] used
for reconstructing protein structures from atom-atom dis-
tances measured by X-ray crystallography and nuclear
magnetic resonance (NMR), in this work, we introduce a
distance geometry simulated annealing (DGSA) based
method to reconstruct three-dimensional chromosomal
structures from the chromosomal wish distances derived
from chromosomal interaction frequencies. In addition,
we use Spearman’s rank correlation [11] to compare re-
constructed structures with original input interaction fre-
quencies in order to investigate which conversion rule
parameters for converting contacts into distances yields
better reconstructed models. We validated our method
with simulated datasets of a yeast chromosome [7] and a
regular helix structure [16], and further tested it on a real
Hi-C dataset [17].

Results and discussion
Reconstruction using simulated datasets
In order to evaluate our method’s reconstruction on
noisy datasets, we tested our method on the simulated
datasets with noise, and compared its performance with
five existing distance-based methods implemented in
Pastis [9] and ShRec3D [12], including three classic
multidimensional scaling methods (metric multidimen-
sional scaling (MDS), non-metric multidimensional scal-
ing (NMDS) and ShRec3D), two statistical methods
using a Poisson distribution (PM1 and PM2). MDS dir-
ectly infers the coordinates of points given their pairwise
Euclidean distances. NMDS relies on the hypothesis that,
if IFij > IFkl, then dij should be shorter than dkl, in order to
derive a stress function to optimize. ShRec3D attempts to

correct derived distances using shortest-path distance al-
gorithm and then reconstructs 3D structures using clas-
sical MDS. PM1 and PM2 model IFs as Poisson random
variables, and then try to maximize the likelihood of ob-
serving IFs. While PM1 needs a formula to convert the
spatial distance to the Poisson intensity as prior know-
ledge, PM2 can automatically adjust the formula to infer
structures that best explain the observed IFs. All five
methods generate a consensus structure given a set of in-
put data. We compare the robustness of methods to noise
so that all methods were supplied with the true formula to
convert IFs into wish distances. We reconstructed struc-
tures using all five methods and evaluated the recon-
structed models by each of the five methods against the
true structure using two measurements – (a) root mean
square error (RMSE), and (b) Spearman’s rank correlation
coefficient. For calculating RMSE, we simply compared
the reconstructed models against the model of yeast
chromosome 4. Similarly, Spearman’s rank correlation co-
efficient was computed between the distance matrix ob-
tained from reconstructed three-dimensional structures
and the distance matrix computed from the true structure.
The comparison of all five methods, illustrated in Fig. 1,
shows that our method performs similar to PM1 and
PM2, which have higher accuracy than ShRec3D, MDS
and NMDS. The reason for the bad performance of
ShRec3D could be that its shortest-path algorithm failed
to derive reasonable distances for reconstruction when
short distances were affected by noise in our simulated
dataset. Hence, in terms of accuracy of reconstruction,
using simulated data we find that Chromosome3D is simi-
lar to other state-of-the-art methods like PM2 and
ShRec3D. However, on real Hi-C data, we observed that
PM2 failed to infer coordinates for all beads (several coor-
dinates are ‘nan’ – see experimental data for detail) and
ShRec3D failed to reconstruct structures for some chro-
mosomes (all coordinates are ‘nan’ [see the “Availability of
data and material” section]. Our method, on the other
hand, always produces a reasonable structure with high
reproducibility.
In addition, we also reconstructed the regular helix

structure (having 100 points) used as benchmark dataset
by Zou et al. [16] and compared our models with the
models reconstructed by two other state-of-the-art
methods, HSA [16] and ShRec3D [12]. Using Spearman’s
rank correlation coefficient (SRCC) and Pearson’s correl-
ation coefficient (PCC), we find that our method’s per-
formance is similar to HSA and ShRec3D at 90, 70 and
25 % signal coverages [see Additional file 1]. Upon
visualization using UCSF Chimera [18], we find that the
reconstructed models appear similar for all three
methods [see Additional file 2]. A high similarity be-
tween structures reconstructed by Chromosome3D and
other methods validated our method’s reconstruction
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accuracy. However, in terms of speed, running reconstruc-
tion jobs for the regular helix structure of 100 points, we
find that the state-of-the-art method, HSA, is around eight
times slower than our method. For the speed test, we re-
constructed models for the regular helix structure at 90,
70 and 25 % signal coverages using Chromosome3D and
HSA. For each chromosome reconstruction, while Chro-
mosome3D took on around 15 min, HSA took around 2 h
(with all default parameters), on average. This slow speed
of HSA method is probably because of its implementation
and dependence on the R software platform and libraries.
Because ShRec3D showed similar performance to our
method and executed faster, we also compared our
method with it on real Hi-C data (see sections below).
In addition to the assessing the reconstruction accur-

acy and speed, we also assessed our models to check if
the models (in polymer representation) follow biophys-
ical principles of distances. Specifically, we hypothesized
that in the reconstructed models, all pairs of adjacent
points should be at similar distance with low standard
deviation and the distances and their deviations should
increase as the separation between the points increases,
at least for sequence separations that are a little higher
than 1 like 2, 3, 4, etc. To test this, we observed the dis-
tribution of distances at each sequence separations from
1 to 8, and compared the distributions across our method,
HSA and ShRec3D. Compared to HSA and ShRec3D, we
find that our method has distributions more towards the
ideal, i.e. adjacent points are always at a similar distance
with almost no deviation and subsequent points have
higher distances with gradually increasing deviations.
In addition, we find that models generated by our
method retain this distance distribution pattern irre-
spective of the noise in input interaction frequency.
(See Fig. 2 for details).

Reconstruction of chromosomal structures using real-
world Hi-C data
We applied Chromsome3D to reconstruct the structures
for all 23 chromosomes of the human genome at resolu-
tions 500 KB and 1 MB for a real-world Hi-C dataset of
the cell line GM12878 [17] by converting IF matrices to
wish distance matrices. This dataset had been normalized
using a matrix balancing algorithm [17, 19]. Following the
protocol to find the inverse relationship between IF matrix
and wish-distances in Equation (1) discussed below, we
find that the value of α around 0.5 yields the best SRCC
values for all chromosomes at both resolutions (see Fig. 3),
suggesting that an inverse square-root function produces
models with best SRCC. Additional file 3 shows the visual-
izations of the structures of all 23 chromosomes at both
resolutions and an additional movie file shows this in
more detail [see Additional file 4].
Since the true structures of the chromosomes are un-

known, we assessed the quality of reconstructed structures
in three ways. First, we computed Spearman’s rank correl-
ation coefficient between the distance matrix of recon-
structed models and input IFs. Second, we compared the
reconstructed structures at the two resolutions, 500 KB
and 1 MB. Finally, we tested the two-compartment feature
of chromosome discussed in [4]. Compared to the base-
line extended structure, the substantial difference between
Spearman’s rank correlation coefficients of the recon-
structed models and those of extended models, at both
resolutions (500 KB and 1 MB), suggests that the recon-
structed models reliably satisfy the information captured
by the IF data [see Additional file 5].
Furthermore, to make structures at 1 MB and 500 KB

resolution directly comparable, we averaged every two
adjacent points of structures at 500 KB resolution to ob-
tain new structures with the same number of loci as the

Fig. 1 The accuracy of five methods on the simulated datasets. Correlation between true distances and reconstructed distances at different noise
levels (left), and root mean square error (RMSE) between true distances and reconstructed distances at different noise levels (right)
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structures at 1 MB resolution. These new structures were
then compared with the structures at 1 MB resolution, ex-
cluding Chromosomes 1, 2, 7, 9, 15, 18 whose number of
loci at 500 KB resolution is not exactly the double number
of loci at 1 MB resolution. We calculated the Spearman
correlation and RMSEs between pairwise distances from
the corresponding structures at 1 MB and 500 KB
resolution (see Table 1). When calculating RMSEs, we
rescaled structures to make the average pairwise

distances of structures at two resolutions equal. This
rescaling ensures that structures are in the same
scale. We also computed RMSEs between 1 MB struc-
tures and the corresponding extended structures as refer-
ences. The high values of Spearman’s rank correlation
coefficients and low values of RMSEs of pairwise distances
from the structures at the two resolutions demonstrate
that the structures reconstructed by Chromsome3D at the
two resolutions are similar.

Fig. 2 Distance distribution at various point separations. The distance distribution at sequence separations 1 through 8 for in models generated
by Chromosome3D, HSA and ShRec3D for the regular helix structure at 90 % signal coverage (top row), 70 % signal coverage (middle row), and
25 % signal coverage (last row)
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Our third assessment of the structures based on the
two-compartment feature of chromosomes [4] is to check
whether the chromosomes can be divided into two sub-
spaces because regions in each subspaces preferentially
interact with each other. We performed Principal Compo-
nent Analysis (PCA) on the IF matrices to divide a
chromosome into two regions – euchromatin and hetero-
chromatin as in [4]. We visualized and colored regions of
the two compartments with different colors to see if they

are separable in the 3D structures as expected. The
visualization in Fig. 4 and the additional movie file [see
Additional file 6] shows that, except for the chromosome
21 and 22 at 1 MB resolution and for chromosome
22 in 500 KB resolution, the two compartments in
chromosome structures are mostly separable, suggest-
ing the partitioning of the two-chromatin partition
feature of these chromosomes.

Comparison with other methods
As a final part of our assessment, we reconstructed 3D
chromosome models for the real Hi-C data at both reso-
lutions (1 MB and 500 KB) using two existing state-of-
the-art methods, PM2 (Pastis) [9] and ShRec3D [12], in
order to compare with our method. We ignored the
HSA [16] method because of its slow speed, considering
the fact that our chromosome structures have up to 479
points. The average Spearman’s rank correlation coeffi-
cients between reconstructed models and input IF at
1 MB/500 KB reconstructed by Chromosome3D, PM2 and
ShRec3D are −0.87/−0.85, −0.79/−0.78 and −0.65/−0.61 re-
spectively. Comparison of the three methods is visualized
in Fig. 5. Upon visualization, we find that the models gen-
erated by our method and PM2 are largely similar. For cal-
culating SRCC values for the models generated by PM2 we
ignored all the coordinates for which PM2 failed to infer
coordinates (around 4 % of coordinates are ‘nan’ in the
generated models). Besides having a poor reconstruction,
ShRec3D, on the other hand, failed to generate models for
some chromosomes. Finally, since the models generated by
our method and PM2 visually looked similar (besides the
SRCC evaluations), through visualization, we also com-
pared the two-compartment features between the models.
In general, we observed that both methods show similar
regions as the compartments [see Additional file 7]. In
conclusion, our method shows highly robust reconstruc-
tions comparable to the state-of-the-art methods with
some advantages over existing methods. A limitation of
our current implementation, however, is its inability to
handle inputs having thousands of points. We plan to im-
prove it in future by developing our own implementation
of the DGSA optimization algorithm.

Conclusions
The 3D conformation of a genome plays an important
role in long-range gene regulation by bringing gene regu-
latory elements such as enhancers and transcription factor
binding sites that are sequentially far away from a target
gene closer to the gene spatially. The 3D genome
conformation can also get the functionally related genes
dispersed in different places in the genome sequence to-
gether to co-regulate. In order to facilitate applying 3D gen-
ome conformations to study this kind of long-range gene
regulation, we introduced a distance geometry simulated

Fig. 3 Alpha (α) in Eq. (1) versus SRCC values for chromosome 15 at
1 MB and 500 KB resolution. Best structures were obtained for alpha
around 0.5

Table 1 Correlation and RMSE between pairwise distances
between some chromosomal structures at 1 M and 500 KB
resolutions

Chromosome Spearman’s rank correlation coefficient RMSE

3 0.95 2.16 (8.92)

4 0.96 2.10 (5.25)

5 0.96 2.29 (6.50)

6 0.95 2.43 (9.05)

8 0.96 2.49 (6.60)

10 0.94 2.64 (8.14)

11 0.90 3.31 (10.16)

12 0.94 2.64 (8.22)

13 0.97 1.61 (6.81)

14 0.94 2.95 (8.30)

16 0.89 4.25 (10.80)

17 0.85 4.05 (9.85)

19 0.86 4.19 (13.36)

20 0.90 3.21 (9.31)

21 0.93 4.81 (5.93)

22 0.86 4.66 (7.58)

X 0.96 2.01 (6.08)

Numbers in parenthesis correspond to the RMSEs between 1 MB structures
and the corresponding extended structures
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annealing based method to reconstruct 3D chromosome
structures from chromosomal contact data. The method
was tested on simulated data and compared with existing
methods and was shown to have fast reconstruction with
accuracy at least as good as other stage-of-the-art methods.
We also used the method to build chromosome structures
of the cell line GM12878. These chromosome structures
show the known two-compartment feature of the human
chromosome and are stable to the change of resolution
used to build structures. This result demonstrated that our
method is useful for reconstructing chromosome structures
to facilitate the study of the genome organization, the regu-
lation of gene expression.

Methods
We model chromosome structures as a string of beads
in three-dimensional space where each bead represents a
DNA fragment at a resolution (i.e. of a specific length).
Our goal is then to place beads in the space such that:
(a) the distances between beads inversely correlate with
interaction frequencies between the beads, and (b) the
distances between the beads optimally satisfy the wish
distances. Our method, Chromosome3D, illustrated in
Fig. 6, reconstructs three-dimensional structures from the
interaction frequency (IF) matrix for each chromosome in
three major steps. First we convert the input IF matrix to
wish distance matrix using an inverse relationship

Fig. 4 Two compartments of all 23 chromosomal structures at 1 MB resolution and 500 KB resolution. Compartments were obtained from the
principal component analysis and colored in red and green, respectively

Fig. 5 Comparison of the models generated by Chromosome3D, PM2 and ShRec3D for all 23 chromosomes on real Hi-C data at 1 MB (top) and
500 KB (bottom). Some plots have two bars (instead of three) because ShRec3D failed to generate models for those chromosomes
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function. In the past, the inverse relationship between IF
data and physical distances had already been implemented
as direct inverse relationship, 1/IF and as inverse cube-
root relationship, 1/IF1/3 [9]. Our experiments with many
forms of available inverse functions showed that the pre-
cise relationship (for best reconstruction) depends upon
the data at hand and precise conversion formula can be
obtained through parameter tuning (discussed in detail in
sections below). Second, for each input IF matrix, we build
20 structures using a Distance Geometry Simulated An-
nealing (DGSA) protocol. Finally, we compute Spearman’s
rank correlation coefficients (SRCC) between the input
interaction frequency matrix and the distance matrix of
the reconstructed structures to rank the structures. Our
experiments with computing SRCC showed that direct
SRCC calculations are less accurate because of the pres-
ence of relatively large number of short-range values.
Hence, for a reliable evaluation, we remove L/10 short-
range values (L being the number of points to be mod-
elled) for computing SRCC [see Additional file 8].

Simulated dataset
In the absence of true chromosome structures for real-
world Hi-C datasets, we tested our method with 13 artifi-
cial chromosomal contact datasets simulated from the the-
oretical 3D model of the yeast chromosome 4 [7] before
applying it to the real-world Hi-C data. The chromosome
is represented by 610 beads at 50 KB resolution. Inter-
action frequencies between beads were obtained using the
formula IFij ¼ 1

dij
, where dij is the Euclidean distance be-

tween beads i and j in the true model of the chromosome.
IFs obtained by this formula were noise-free. The true
value of α to convert IFs into wish distances (see Eq. 1) in
this case is 1. And later, we tested our method to see if it
could detect this value. For this testing, various levels of
noise were introduced into the IF matrix [see Additional
file 8 for details]. In addition to this realistic simulated data,
for a more rigorous evaluation of Chromosome3D, we also
reconstructed the regular helix structure introduced by
Zou et al. [16] for benchmarking the HSA method, at vari-
ous signal coverages and compared the reconstruction re-
sults with two other state-of-the-art methods.

Conversion of interaction frequency to wish distance
In the absence of true chromosomal structures, a major
challenge for any distance-based reconstruction method
is to verify that the chosen conversion rule (to transform

IF data to wish distance) is optimal. We hypothesize that
appropriate conversion rule for a given dataset can be
obtained by evaluating the reconstructed structures
using SRCC. To test this, we reconstructed structures
for the simulated data (structure of yeast chromosome
4), which is known to have a direct inverse relationship
(with α set to 1), at various noise levels and find that the
reconstructed structures having high SRCC values are
those build using near direct inverse relationship.
Specifically, each cell value IFij in the IF matrix is con-

verted to distance using the following formula:

dij ¼ K

IFij
� �α

=avg IFij
� �a� � ð1Þ

where IFij is the value in cell [i, j], K is the scaling con-
stant, α is parameter to be tuned, and avg(IFij) is the
mean of all converted IF values. Each cell value is nor-
malized by the mean, avg(IFij), to make the conversion
process invariant of the scale of input IF values. The
scaling constant, K, controls the scale of the output
structures, i.e., very small values result in structures with
points very close to each other, and the structures, when
visualized, look like a lump of points, and conversely,
very large values overly relax the long-range distances,
and the structures are stretched to look like extended
structures. We find that the scaling constant K is
dependent upon the implementation of reconstruction
method, and for our DGSA implementation, values
around 11 showed best reconstruction. Hence we used
K equal to 11 for all of our experiments. The most im-
portant parameter, α, that controls the inverse relation-
ship, needs to be tuned to maximize the SRCC of the
reconstructed structures. Tuning α was also used in
[11], where α was tuned to minimize the L1 error be-
tween predicted IFs and IFs from the input. However, in
L1 error, outliers with large errors can dominate other
terms and α can just be tuned to reduce the effect of
these outliers. We found that correlation is a more ro-
bust measurement for the accuracy of predicted models.
And it has been also used widely to assess the quality of
predicted models [9, 12, 16, 20]. Using the simulated
data with various levels of noise, where the actual re-
lationship between the IF data and wish distances is a
direct inverse, we reconstructed structures using vari-
ous values of α and selected the top structures using
Spearman’s rank correlation coefficients. The relation-
ship between α and SRCC (see Fig. 7) shows that the

Fig. 6 Reconstruction of chromosomal structures using distance geometry simulated annealing (DGSA)
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best SRCC values are obtained for the conversions
with α ~ 1.0 to 1.4, and this validates that relying on
SRCC values to select conversion parameters is rea-
sonably accurate.

DGSA protocol for reconstructing structures
We use a customized version of the distance geometry
simulated (DGSA) algorithm [21] originally proposed by
Havel and Crippen [22] and implemented in the Crystal-
lography & NMR System (CNS) suite for reconstruction.
The wish-distances obtained from IF data are translated
to protein carbon-alpha – carbon-alpha (Cα-Cα) dis-
tances in order to use them as restraints for the overall
optimization process. We start the overall protocol with
an extended structure of a chromosome where all
chromosomal points (beads) are placed roughly in a line
[see Additional file 8 for details]. Then, all Cα-Cα re-
straints are translated into upper and lower bounds on
distances using set of inequalities that the distances have
to satisfy. This gives two distance matrices: a matrix of
lower bounds and, a matrix of upper bounds. To obtain
a trial distance matrix, a distance matrix that gives rise
to a single structure is generated by selecting a random
distance that lies between the upper and lower restraints
for each residue pair. By applying the law of cosines, the

distance matrix is used to compute a metric matrix - a
matrix of scalar products of position vectors of the
atoms when the geometric centre is placed in the origin.
The eigenvectors of the metric matrix gives the principal
coordinates of the atoms. This starting structure is pro-
vided as input to molecular dynamics-based simulated
annealing protocol to minimize the overall energy of the
structure. Simulated annealing is carried out in two
stages – 1000 steps of high temperature molecular dy-
namics annealing with starting temperature of 2000,
followed by a slow-cool annealing. We defined the en-
ergy of a structure as the sum of all the physiochemical
energies of a structure in conjunction with the restraint
energy term, as defined below

Etotal ¼ Ephysio−chemical þ dcurrent−structure−dwishj j2 ð2Þ

where, Etotal is the total energy of a structure, Ephysio− chemical

is the physiochemical energy of a structure that include
terms like bond energies, dihedral angle energies and Van
der Walls energies. The last term computes the squared
error in the realization of our wish-distances. Final
step of energy minimization is performed using 10 cycles
of 15,000 steps of Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) minimization [23].

Fig. 7 Quality of top structures at different values of α for simulated data with 5, 10 and 20 % noise. Spearman’s average rank correlation
coefficient (against the input IF) is used to evaluate the quality of structures. The closer to − 1 the correlations are, the better structures. The
structures are too compact for small α and too loose for large α
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Additional files

Additional file 1: Figure S1. Comparison of Chromosome3D with HSA
and Shrec3D on the reconstruction of regular helical structure using
Pearson’s correlation coefficient (PCC) and Spearman’s rank correlation
coefficient (SRCC) at 25, 70 and 90 % signal coverages. PCC and SRCC are
computed between the pairwise distance of the reconstructed models
and the input interaction frequency matrix. (DOCX 118 kb)

Additional file 2: Figure S2. Reconstructed regular helical structure
models reconstructed using Chromosome3D (top row), HSA (middle row)
and Shrec3D (bottom row). The first column models (a) are the models
reconstructed at 90 % signal coverage, second column models (b) at
70 %, and third column (c) at 25 % signal coverage. (DOCX 8090 kb)

Additional file 3: Figure S3. Top structures for all 23 pairs of
chromosomes (numbered sequentially) visualized using UCSF Chimera.
For each chromosome two structures are shown side by side – a
structure at 1 MB resolution on the left and a structure at 500 KB
resolution on the right. (DOCX 502 kb)
Additional file 4: Video S1. Top structures for all 23 pairs of
chromosomes (numbered sequentially) built using Chromosome3D and
visualized using UCSF Chimera. For each chromosome two structures are
shown side by side – a structure at 1 MB resolution on the left and a
structure at 500 KB resolution on the right. (MP4 12371 kb)
Additional file 5: Table S1. Spearman’s rank correlation coefficient
between distances obtained from reconstructed structures and input IFs
computed after filtering 0.1 L short-range values; the numbers in parenthesis
are the SRCC values for extended models used for comparison. The last two
columns report the execution time in hours and minutes. (DOCX 22 kb)
Additional file 6: Video S2. The two compartment features highlighted in
top structures built using Chromosome3D for all 23 pairs of chromosomes
(numbered sequentially) visualized using UCSF Chimera. For each
chromosome two structures are shown side by side – a structure at 1 MB
resolution on the left and a structure at 500 KB resolution on the right.
(MP4 7997 kb)
Additional file 7: Figure S4. The two compartment features highlighted in
Chromosome 1 (left) and 2 (right) in the models reconstructed by
Chromosome3D (top row) and PM2 (bottom row). (DOCX 761 kb)

Additional file 8: Supplementary sections on Methods. (DOCX 1850 kb)
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