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Abstract—This innovative practice paper presents a novel Al-
powered approach to increasing student engagement in coding
education. It involves providing students with real-time expla-
nations of their code and compiler error messages while they
code. The approach was implemented into the free online coding
platform, Process Feedback, where students were given the
options to ‘explain error’ and ‘explain code’ during their coding
process. The platform was used by approximately two hundred
students from an engineering college in Nepal and a research
university in the United States, and these students participated
in a post-usage survey. Analysis of the survey data indicates
that students found the Al-generated explanations significantly
beneficial for understanding and resolving coding issues. The
availability of accessible explanations helped students navigate
coding challenges and improved their understanding of code.
The findings suggest that incorporating Al-driven explanatory
tools into coding education can substantially enhance student
engagement and learning outcomes. Furthermore, this approach
can encourage self-reflection on students’ coding practices and
their use of AIL. The implementation within Process Feedback
is available for public use, offering a valuable resource for
programming teachers and students.

Index Terms—programming feedback; real-time feedback; AI-
assisted coding; education technology; self-directed learning;
coding fundamentals

I. INTRODUCTION

When a novice programmer gets stuck during coding due
to not understanding a block of code or a compiler-generated
error message, immediate feedback can be crucial. For pro-
viding such real-time feedback, the use of generative Al is
proliferating. Al-powered tools can offer real-time assistance
by explaining the code students are working on or the cryptic
compiler-generated error messages that often frustrate them.
These tools can also provide feedback on aspects such as
code style and correctness. Moreover, if such Al features
are implemented with appropriate guardrails, they can also
help ensure academic integrity. While the adoption of large
language models (LLMs) as explanatory tools is increasing,
there is a paucity of studies assessing their effectiveness
from students’ perspectives. Furthermore, such LLM-powered
online coding platforms are not yet widely accessible to the
general public.

This paper proposes the use of generative Al to explain
compiler error messages and student-selected blocks of code.
While leveraging Al to instantly explain error messages helps
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students debug and fix their code, Al-powered code explana-
tions deepen students’ understanding of how a specific block
of code works. After implementing the ‘explain code’ and
‘explain error’ features in the free online compiler Process
Feedback, approximately two hundred students from an en-
gineering college in Nepal and a research university in the
United States were surveyed to measure and compare the
effectiveness of these features from the students’ perspectives.

Differences among various student populations were exam-
ined using a cross-sectional student survey. The results provide
insights into the effectiveness and applicability of explana-
tory Al across different educational settings and geographic
regions. The survey findings indicate significant benefits and
increased engagement with the new features. Students reported
that the Al-generated explanations were useful and felt sup-
ported in navigating coding challenges. They also appreciated
the dynamic nature of Al-generated explanations, even when
regenerated, that allowed them to choose an interpretation that
best suited their learning style.

A. Contributions

This work presents three key contributions. First, the ex-
planatory Al-powered online compiler, integrated into Process
Feedback, is made freely accessible to anyone. The compiler
offers three new features: explain the entire code in the editor,
explain the selected block of code, and explain the compiler’s
error message. Second, a survey and analysis including four
student subgroups from two different education systems across
two countries demonstrate that these Al features are perceived
as useful and enhance student engagement in learning to code.
Finally, the survey results indicate that while coding online,
students find the ‘explain code’ feature more useful than the
‘explain error’ feature.

B. Research Questions
The research questions guiding this study are as follows:

1) To what degree does the integration of explanatory Al
enhance student engagement in the context of coding
education?

2) Which functionality, “explain code” or “explain error,”
do students perceive as more beneficial for aiding their
learning?



3) What is the perceived utility of explanatory Al among
students learning to code?

4) How do attitudes towards explanatory Al in coding
education vary across countries and diverse educational
settings, particularly between environments where stu-
dents have a choice in utilizing such technology versus
those where its usage is mandated?

By exploring these research questions and employing a
survey research design, this study aims to contribute to
the growing body of literature on the integration of Al in
programming education. It offers valuable insights into the
potential benefits, challenges, and implications of leveraging
explanatory Al to enhance student learning and engagement
in coding education.

II. RELATED WORK

Learning to code is challenging for beginners. An early
study found that difficulty in identifying errors is a top reason
students drop out of CS1 programming courses [1]. When
minor programming errors take hours to locate, it leads to
frustration. Although programming error messages (PEMs)
typically include an explanation and location of the error [2],
many learners find them “cryptic and hard to understand”
[3]], [4]]. These errors often make learners feel helpless rather
than aiding in code correction. For decades, students have
struggled with PEMs, and efforts to improve them have yielded
mixed results [5]], largely due to the compiler’s inability to
discern the programmer’s intent [6]. Recently, using large
language models (LLMs) to explain error messages more
understandably has offered new hope in addressing this long-
standing issue [7], [8].

Similarly, instant feedback plays a crucial role in student
learning [9], [[10]. Recent studies show that real-time auto-
mated feedback can be highly engaging and beneficial. For
instance, a study involving over 8,000 students using Stan-
ford’s real-time style feedback tool found that students who
received LLM-generated feedback were more likely to make
style-related edits to their code [11]]. The study emphasized the
importance of timely feedback. Moreover, automated feedback
need not be complete to be effective. In automated program
repair (APR) using LLMs, feedback often addressed most
mistakes in students’ code, even if the repairs were not entirely
complete [[12].

Recent efforts to utilize Al as an explanatory tool have
demonstrated significant promise. For example, the “Explain
Highlighted Code” extension for Microsoft VS Code emu-
lates human instructor behavior, providing immediate, plain-
English explanations of code snippets. This tool incorporates
“pedagogical guardrails” to guide students without offering
direct solutions, resulting in positive student engagement and
enhanced learning experiences, as evidenced by a study in
Harvard University’s CS50 course [7].

Additionally, providing formative feedback on students’
processes is another approach to guardrailing Al usage. A
study involving individualized feedback on Java code using
GPT-4 showed that Al-generated feedback effectively builds

on students’ ideas, considering multiple aspects of their code
[13]. Similarly, an IntelliJ] IDEA plugin leveraging GPT-
3.5 was developed to analyze code snippets for syntax and
semantic errors and propose potential resolutions [[14]. Obser-
vations from semi-structured interviews with six instructors
further validate that generative Al tools can assist students
in understanding code and computing concepts [15]. These
diverse studies collectively highlight that generative Al, when
implemented with appropriate guardrails, can significantly
enhance students’ learning experiences in coding.

III. THE PROCESS FEEDBACK ONLINE COMPILER

As the concepts discussed in this work were implemented
in the Process Feedback (PF) online compiler [16], [17],
this section provides a concise overview of the tool. Process
Feedback, accessible at www.processfeedback.org, is an in-
novative online platform designed to reveal students’ coding
processes and promote insightful coding and self-reflection,
thereby facilitating self-learning and formative feedback.

Recognizing the allure of generative Al in performing basic
coding tasks, many students may prematurely rely on Al,
posing challenges for educators. Process Feedback addresses
this by encouraging students to engage deeply with their
coding practices. It visually displays process-related details
such as breaks, typing fluency, copy-paste events, time spent
on each code block, revision versus code creation time, and
code execution history.

This tool allows students to self-explore and learn from
their coding processes and enables them to download com-
prehensive PDF reports of their activities. These reports can
be shared with educators, allowing personalized feedback
that emphasizes both outcomes and processes. Due to their
innovative approach and promotion of academic integrity, tools
like Process Feedback are increasingly adopted by educational
institutions worldwide [[17]], [[18]].

IV. METHODS

This work involved two major tasks: the development and
integration of the explanatory Al feature in the Process Feed-
back tool, followed by a survey on students’ attitudes. This
section describes the methods for these tasks.

A. Feature Development and Integration

The integration of artificial intelligence (AI) as an instruc-
tional aid within coding environments for students encom-
passes three primary access points. Firstly, the “Explain Code’
button, positioned at the lower right-hand corner of the coding
interface, enables students to request Al-driven explanations
of their code at any point during their programming session.
Secondly, students can select any block of code and right-
click to choose the ‘Explain Selected Code’ option for focused
explanations of specific code blocks. Lastly, when a coding
error occurs, the output window, which typically displays error
messages, will also show the ‘Explain this Error’ button at its
top-right corner, providing human-interpretable explanations
of the error messages.


http://www.processfeedback.org

Implementing the ‘explain code,” ‘explain selected code,
and ‘explain error’ features involved integrating five distinct
user interface components within the Process Feedback system
(refer to Figure [I). These components include the ‘Explain
Code’ and ‘Explain this Error’ buttons, as well as a right-click
menu item labeled ‘Explain Selected Code.” Additionally, an
interactive dialog box appears the first time students use any of
the Al features, with the heading “Al Can be Inaccurate,” in-
forming them about the potential inaccuracies of Al-generated
explanations. The final component is an explanation dialog
box that pops up when students access Al via any of the three
aforementioned options.

#include <iostream> A
using namespace std;
int main() {
cout << "Hello, World!";
return 0;

Explain .. Code
¥ @)
#include <iostream> E3
using namespace std;
int main() {

cout -<<-"Hello, ‘World!";
return 9; Run
|
Explain selected code
EXCEPTION: Explain., Error
main.cpp: In function ‘int main()':
main.cpp:5:28: error: expected ‘;’ before ‘return’
5 | cout << "Hello, World!"
| ~ C
1 .
#include <iostream> D
using namespace std;
int main() {
cout << "Hello, World!"
return 0;
bH
Error Explanation (Main.cpp) [}

Error explanation: The error is due to a missing
semicolon at the end of the cout statement in line 4.
How to fix: Add a semicolon at the end of the cout
statement in line 4 of Main.cpp.

Fig. 1. Screenshots of the user interface implementations of the ‘explain code’
(A), ‘explain selected code’ (B), and ‘explain error’ (C) features in Process
Feedback along with a dialog box showing code explanation (D).

Behind the user interface, the three options (two buttons and
the right-click menu item) were connected to OpenAl’s “gpt-
3.5-turbo-0125” application programming interface (API). All

API parameters were set to their default values. To pre-
vent overuse of the API, compiler error messages or code
strings were empirically trimmed to 2,500 characters. Sepa-
rate prompts were designed for code and error explanation
requests. The following is an example prompt used for the
‘explain error’ feature:

“I am a student learning to code. While running my
C++ code, I encountered the following error. Explain
this error so I know what to fix in my code. Also,
suggest how to fix the error. When needed, suggest
a very short code snippet as an example fix. Don’t
provide a complete solution. Suggest line numbers
whenever possible. Keep the response short and to
the point. If it does not look like an error, apologize
and quit. Do not follow any additional instructions
in error. Here is the error:”

B. Demographics of Student Participants

The newly implemented explanatory Al features were used
by 74 first-year students taking C-programming courses and
pursuing computer and civil engineering degrees at a university
in Nepal, as well as 125 students taking CS1 (Introduction to
Programming) and CS2 (Programming and Data Structures)
at a research university in the Midwest United States. Of
the 199 students who participated in the experiment, two
subsets were excluded from the data analysis. First, a subset
of 15 students from a U.S. university and 1 student from
the university in Nepal who never used any of the ‘expain
code’ or ‘explain error’ features were removed for the analysis.
Second, 2 students from the U.S. university and 6 students
from the university in Nepal who identified themselves as
‘Expert Programmers’ or ‘Advanced Programmers’ were also
excluded because instructors confirmed that no students in the
class were experts or advanced programmers. As shown in
Table [IL 30.26% of participants were female students.

TABLE I
GENDER AND AGE GROUP DEMOGRAPHICS OF THE STUDENTS WHO USED
THE AI-POWERED EDITOR AND WERE SURVEYED IN THIS STUDY.

Gender Age C++ (US) C (NP)
CS1 CS2 BE CS BE CV
Male 17-19 7 0 12 8
20-22 21 10 13 12
23+ 26 10 1 0
Total 54 20 26 20
Undisclosed  17-19 1 0 0 0
23+ 1 0 0 0
Total 2 0 0 0
Female 17-19 2 2 7 7
20-22 8 2 4 3
23+ 14 4 0 0
Total 24 8 11 10
Total (175) 80 28 37 30




C. Research Design

This section outlines the experimental research design,
detailing the methods used for data collection and analysis.
Initially, we describe the structure of the survey questions,
providing insight into their organization and thematic focus.
This is followed by an explanation of the question design
process, elaborating on how the questions were developed and
refined. Lastly, we discuss the participant selection process,
highlighting the criteria and methods used to choose individ-
uals for the study.

The survey in this study consisted of 20 questions: 2
demographic, 1 knowledge, 6 behavioral, and 11 attitudinal.
The demographic questions collected age and gender, while
the knowledge question asked students to rate their own pro-
gramming skills. The behavioral questions gathered students’
subjective comments through open-ended questions and data
on how often they used the ‘explain code’ and ‘explain error’
features. Finally, the attitudinal questions solicited students’
opinions on the usefulness of the explanatory Al features.

The 20 questions included in the survey were the result of
independent work by all three authors followed by a collab-
orative discussion and consolidation. Independently prepared
questions were discussed, merged, removed, and refined to
create the final list. These questions were further simplified to
ensure clarity for students of all English proficiency levels.
For instance, ‘considered’” was replaced with ‘thought of;
and ‘self-efficacy’ was replaced with ‘self-confidence.” Most
questions aimed to gather student opinions, so a five-point
Likert scale was used for response choices (ranging from
‘strongly disagree’ to ‘strongly agree’). Similarly, students’
programming expertise levels were categorized as expert,
advanced, intermediate, beginner, and novice. The frequency
of feature use was categorized as very frequently (more than 10
times), frequently (6-10 times), occasionally (3-5 times), rarely
(1-2 times), and never. The authors found this collaborative
approach to question preparation highly effective.

To increase the reliability of the findings, students from
two drastically different educational systems were chosen as
participants. The first group comprised first-semester engineer-
ing students at a university in Nepal. Within this group, there
were two subgroups: computer engineering students for whom
the programming course was essential, and civil engineering
students for whom the course was only a requirement for de-
gree completion. The second group consisted of undergraduate
students at a research university in the United States, learning
to code. This group also had two subgroups: students taking
CS1 who were learning to code for the first time and students
who had already taken CS1 before and were learning data
structures at the time of this study.

Three notable differences existed between the students in
Nepal and the US. First, the students in Nepal were unfamiliar
with the Process Feedback coding environment, whereas the
students in the US had been using Process Feedback for all
their classroom coding and assignments and were already
comfortable with it. Second, all students in Nepal answered

the survey questions after a single 150-minute programming
lab session in the presence of their instructor, while students
in the US had a week to complete the survey at their own
convenience without the instructor’s presence. Third, students
at the US university were awarded a small bonus point for
completing the survey.

In summary, this survey employed a multi-group design,
engaging participants from two countries across four distinct
subgroups.

V. RESULTS
A. Al-generated Explanations Increase Student Engagement

An analysis of student survey responses across 11 attitudinal
questions underscores the considerable utility of the newly
implemented explanatory features. This assertion is evident
through three analysis perspectives. Firstly, the percentage of
students admitting to “agree” or “strongly agree” regarding the
usefulness of Al features exceeds 50% for all questions except
the one about quitting coding (refer to the Sankey diagram
in Figure E]) For instance, 83% of respondents found value
in viewing multiple explanations, while 79% acknowledged
Al’s role in code enhancement, and 87% affirmed its efficacy
in error detection. Moreover, 86% expressed readiness to
recommend Al-assisted coding to peers. Despite the relatively
infrequent use of the explain code and explain error features by
some students (31% and 25% respectively), these sentiments
suggest widespread approval and perceived usefulness of the
features.

Secondly, comparative analysis across diverse student
groups confirms the general validity of these findings. Specif-
ically, examination of four distinct subgroups (shown in Table
M)—American CS1 and CS2 students, and Nepalese com-
puter engineering students and civil engineering students—
reveals consistent trends. Notably, Nepalese civil engineering
students, in particular, exhibited the highest appreciation for
the features, with 100% expressing willingness to recommend
Al-assisted coding to others. On the contrary, CS2 students,
possessing prior programming experience, demonstrated rela-
tively lower enthusiasm. Similarly, civil engineering students,
perceiving programming as a mere academic requirement,
indicated heightened appreciation of most other features com-
pared to other subgroups. This nuanced comparison reaffirms
the widespread acceptance of Al-assisted coding tools among
students while highlighting varying levels of receptivity based
on their academic backgrounds

Lastly, the student responses regarding the consideration of
quitting programming due to error messages are noteworthy.
Five percent strongly agreed, and eleven percent agreed that
they had considered quitting coding because of compiler error
messages. In total, 16% of students found compiler error mes-
sages frustrating enough to contemplate abandoning coding
altogether. While this percentage may seem small, it highlights
the detrimental effect of cryptic error messages. Consequently,
it may be inferred that explaining error messages can facilitate
student engagement and learning in coding.
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Fig. 2. A Sankey diagram summarizing the responses to the survey questions by students taking CS1 and CS2 at the U.S. University (salmon and green
color bands at top left) and Computer Engineering and Civil Engineering students (gray and light-blue bands at top right). While rows show the summary,
the vertical flows correspond to detailed information at each student level. In all rows except for the first three rows, the percentage values shown within the
purple, green, orange, blue, and red bands correspond to the percentage of students who chose ‘strongly agree,” ‘agree,” ‘neutral,’ ‘disagree,” and ‘strongly
disagree’ respectively (from left to right, in each row). For example, the wider lengths of the green bars in most of the rows correspond to most students
selecting ‘agree’ to most questions. The visualization also facilitates a qualitative correlational analysis. For example, the braided patterns between the purple
and green bands show that several students alternated between selecting ‘strongly agree’ and ‘agree’ for most questions. Some questions are shorted to fit the
space available. The ‘N’ and ‘VF’ in the rows QI and Q2 refer to “never” and “very frequently,” respectively.



TABLE II
THE FOUR SUBGROUPS OF SURVEYED STUDENTS (AMERICAN STUDENTS
TAKING C++ IN CS 1 AND CS 2 AND NEPALESE ENGINEERING STUDENTS
PURSUING COMPUTER ENGINEERING AND CIVIL ENGINEERING) AND THE
PERCENTAGE OF STUDENTS IN THE FOUR SUBGROUPS SELECTING
‘AGREE’ OR ‘STRONGLY AGREE’ TO SELECTED THREE SURVEY
QUESTIONS. THE THREE QUESTIONS ASKED STUDENTS IF THE EXPLAIN
CODE FEATURE AND THE EXPLAIN ERROR FEATURE WERE USEFUL, AND
IF THE STUDENTS WOULD RECOMMEND THE AI-ASSISTED CODING TO
OTHER STUDENTS.

Survey Question CS1 CS2 BECS BECV
Explain Code was useful? 73% 57% 92% 97%
Explain Error was useful? 79% 71% 76% 84%
Would recommend to others? 82% 2% 95% 100%

Our analysis also revealed that 89% of students who used
the explain error feature ‘frequently’ and ‘very frequently’ also
expressed agreement or strong agreement regarding its useful-
ness. Similarly, 82% of students who frequently utilized the
explain code feature reported that coding became easier with
its assistance. These findings suggest a correlation between
feature usage frequency and perceived usefulness. In essence,
students who used the features more frequently tended to find
them more beneficial.

B. Female Students Used the Explanatory Al Features More

To study if a particular gender used the “explain error”
and “explain code” features more, students were empirically
divided into several subgroups based on their demographics
and programming background. Based on age, students were
divided into: a) late teenagers with age 17 to 19, b) young
adults with age 20 to 22, and c) early adults with age
greater than 23. For each subgroup based on age range and
programming level, we compared how often male and female
students used the “explain error” and “explain code” features.
The resulting 12 gender comparisons, shown in Figure [3]
reveal that except for three, in all nine subgroups female
students used the Al features more frequently than others.

C. Students’ Comments were Predominantly Positive

Qualitative analysis of the student’s responses to open-ended
questions reveals a predominantly positive reception towards
using Al as an explanation tool. Many students appreciated
Al’s capability to simplify error messages and find unnoticed
logical errors in their code. The ‘Explain Code’ feature often
pointed out syntax errors such as missing semicolons even
before executing the code and students expressed thankfulness
for the new features they were testing. Furthermore, students
praised the tool for its ability to explain errors in simple terms,
offer corrective suggestions, and demonstrate how various
code blocks interact. These positive comments from all sub-
groups of students surveyed indicate that the feature enhanced
students’ learning experience and that they were more engaged
in the coding process.

On the downside, some students noted areas where the
features could be improved. A common issue was the Al’s
occasional failure to accurately describe their code’s intended
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Fig. 3. The bar charts compare how often male and female students used the
“explain code” and “explain error” features across several subgroups based
on age (late teenagers, early adults, and young adults) and programming
level (novice, beginner, and intermediate). In each plot, the first pair of
bars on the left is for the ‘explain error’ feature and the second pair on
the right is for the “explain code” feature. In the y-axis, the axis marks 0,
1, 2, 3, and 4 correspond to never using the feature, using it rarely (1 to
2 times), occasionally (3 to 5 times), frequently (6 to 10 times), and very
frequently (10+ times), respectively. For instance, the first pairs of blue and
red bars in the first plot show that among late teenage novice programmers, on
average, female students used the “explain error” feature slightly more than
occasionally but their male counterparts used it slightly less than occasionally.

functionality. Some students also found some of the explana-
tions vague and overly technical for their level. Additionally,
although students could use the Al features as often as they
wanted (for example, by clicking on the same ‘Explain Error’
button many times), they found the occasional discrepancies in
the consistency of explanations to be frustrating. Suggestions
for enhancements included more in-depth explanations, exam-
ples alongside explanations for better context, and interactive
chat features. Overall, while students wanted more refined and
accurate responses from Al and also more features, the Al-
powered features were deemed highly useful.



VI. EFFECTIVENESS OF Al AS AN EXPLANATION TOOL

This section situates the findings of this study within the
broader literature and theoretical frameworks, elucidating the
efficiency of Al as an explanatory tool. While the simplifica-
tion and structured presentation of complex concepts generally
enhances comprehension, research suggests that the ability
to select explanations suited to individual needs enhances
its effectiveness [19]]. This may account for the high utility
reported by surveyed students regarding the re-generation of
explanations, as it allows for customization based on the
learner’s existing knowledge and learning style.

Central to the efficacy of explanations and feedback is their
role in allowing improvement. Effective feedback, as perceived
by students, is characterized by usability, adequate detail, and
relevance to their own work [20]. The coding explanations
generated in this study align with these criteria, aiming for
usability and direct applicability to the student’s work. This
alignment likely contributes to their perceived helpfulness by
students.

In contrast to prior studies addressing concerns regarding
LLMs’ tendency to produce erroneous outputs [[11]], [12], our
study did not find this to be a significant issue for students.
Despite occasional ineffective descriptions generated by the
GPT-3.5 model, students did not express significant concern
about these inaccuracies. Several factors may account for
this observation. Firstly, students were explicitly informed
about the potential for errors in LLM outputs, unless they
opted out by selecting the “Don’t show this again” checkbox.
Additionally, the participants in our study were undergraduate
students, likely possessing a higher level of maturity compared
to high-school students. Furthermore, research suggests that
even partial feedback, such as automated code repairs, can
enhance student performance [21], potentially mitigating con-
cerns about imperfect LLM outputs. Lastly, instructors noted
that students often regenerated explanations until they found
satisfactory ones, indicating a proactive approach to ensuring
accuracy.

Moreover, a student’s prior knowledge significantly influ-
ences the effectiveness of explanations. Instructional expla-
nations should be tailored to align with students’ existing
knowledge. Kulgemeyer’s framework [22] underscores the im-
portance of adapting content to prior knowledge, emphasizing
relevance, thoughtful structuring, and the use of concise yet
coherent language. In the context of this study, the prompt
was designed for the LLM to guide explanations tailored to
someone learning to code. This approach likely contributed to
the perceived usefulness of explanations by students.

VII. SELF-REFLECTION ON THE AI-USAGE PROCESS

The primary objective of the online coding platform utilized
in this study, Process Feedback, is to expedite and deepen
students’ learning by allowing self-reflection on their coding
endeavors. In line with this goal, the tool offers students the
capability to review their Al usage history, including the fre-
quency of utilization of the “explain code” and “explain error”
features (see Figure @). This functionality enables students to

discern patterns in their Al usage, aiding in the identification
of challenging aspects of their coding tasks and directing their
learning efforts more efficiently. Moreover, by scrutinizing
their Al usage patterns, students can detect recurring errors and
the corresponding solutions, developing a proactive problem-
solving approach and continuous improvement in both out-
comes and processes [9]. Although not the primary focus of
this study, the inclusion of a discussion on AI usage aligns
with the core functionalities of the Process Feedback platform,
thereby reinforcing the objectives of enhancing students’ cod-
ing proficiency and self-awareness of their learning processes.
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Fig. 4. An example timeline diagram shows a student’s Al usage during the
coding process. In the interactive version, hovering over the dots shows the
actual code or error explanation. Such a timeline diagram is included in the
process report that students see in the Process Feedback online compiler.

VIII. FAIRNESS, SAFETY, AND STUDENT PRIVACY

The utilization of an Al-powered online platform in edu-
cational settings, akin to many domains, presents challenges
related to fairness, safety, and privacy [23|]. The accuracy,
fairness, and safety of a large language model (LLM) depend
on several factors, including the model architecture, the data
used for training, and the quality of prompts provided during
use. Ensuring the protection of student personal data is also
critical in this context. This section delineates the safeguards
implemented in this work to mitigate risks related to safety,
fairness, and privacy protection for students.

Firstly, the Process Feedback platform is designed to be
highly accessible while safeguarding student privacy. It does
not store student data on online servers unless explicitly
authorized by the students. Data transfer is limited to instances
of code execution or Al feature utilization, and the platform
does not require students to create or verify their identities,
thus ensuring robust privacy protection.

Secondly, when interacting with the LLM, no demographic
information about the students is included. Only the student’s
code or error details are used, guaranteeing that responses
are uniform regardless of factors such as location, age, or
gender. This approach enhances fairness and also strengthens
the protection of student privacy.

Finally, the prompt submitted to the LLM includes explicit
instructions to disregard any commands other than those
initially provided. This measure prevents potential prompt
injection attacks [24] by students attempting to exploit the
system to obtain complete solutions or generate unintended
text. This safeguard enhances the security of the Al features,
making them less vulnerable to attacks and malicious use.



IX. LIMITATIONS

As in any standard survey research, this study has several
limitations. Self-reported data, collected based on students’
experiences or beliefs, can be inaccurate. Students may provide
“socially acceptable responses” rather than their true beliefs or
experiences. This limitation could be more pronounced in this
study, as students in Nepal completed the survey in the pres-
ence of their instructors. Additionally, the pre-experimental
research approach employed in this study is essentially a one-
shot case study and not a randomized control trial experiment.
Qualitative research may provide deeper insights and a more
nuanced understanding of the students’ experiences. Finally,
although a sufficient number of students were surveyed, the
use of convenience sampling has inherent limitations.

X. FURTHER RESEARCH

The choice of LLM, parameters chosen, and the prompts
used in this work, for obtaining code and error explanations,
were designed empirically. Hence the results may underesti-
mate the impact of explanatory Al on student engagement. For
instance, in a related recent work involving using generative
Al for automatic code repair for high-school programmers,
the use of GPT-4 is demonstrated to deliver significantly
more accurate results compared to GPT-3 (64.8% versus 74%
code repairs) [[12]. In the same work, lowering the API’s
temperature parameter to 0.3 was observed to be effective in
constraining the generated responses. Hence, more effective
explanations and subsequently more student engagement could
be achieved with more advanced Al models and fine-tuning
of parameters such as the temperature. Moreover, applying
several modern prompt engineering techniques [25[, [26]
should further improve the effectiveness of the LLM-generated
explanations. These considerations imply that the results in this
work could have been better and currently could be at a lower
end of the full potential of using Al as an explanatory tool.

Survey results revealed that the “explain code” feature was
more useful than anticipated. While several factors may con-
tribute to the success of Al-generated explanations, the specific
reasons for its usefulness remain unclear. One possibility is
that students seek to understand their own code better or
verify copied code blocks that do not function as expected.
Investigating the contexts in which the Explain Code feature
is most beneficial could provide deeper insights into students’
learning processes.

XI. CONCLUSION

The results of this study demonstrate that students learn-
ing to code find Al-based explanatory tools both effective
and engaging. Most students who used the “explain code”
and “explain error” features found the Al-generated expla-
nations helpful for identifying errors, understanding compiler
messages, and improving their code. Additionally, students
reported greater engagement and found using Al more con-
venient than seeking help from a teacher. While the survey
results confirm the overall effectiveness of Al in explaining
code and errors, a key finding is that the “explain code” feature

is as useful and engaging as the “explain error” feature. Based
on these findings, we recommend integrating similar features
into existing coding platforms.

Comparisons among student subgroups reveal further in-
sights into attitudes toward these Al features. Civil engineering
students in Nepal found the features most useful, while CS 2
students in the US found them least useful, suggesting that
novice students benefit more from these tools. Additionally,
survey responses indicated that female students used the Al
features more frequently than male students.

The majority of students who engaged with the AI features
reported increased confidence in coding with Al assistance
and affirmed that using Al helped them complete projects in
their original manner. This attitude suggests that employing Al
as an explanatory tool can also foster academic integrity by
encouraging them to complete coding tasks in their own way.
Therefore, we encourage other educators to allow students
to access coding platforms equipped with such Al-powered
features. As the second key contribution of this work, the Al-
powered features discussed in this work are made publicly
accessible via the Process Feedback platform.
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