
Coding Process Visualizations for Improved
Learning and Academic Integrity in CS1

Badri Adhikari
Department of Computer Science
University of Missouri-St. Louis

St. Louis, USA
adhikarib@umsl.edu

Nirala Lamichhane
Department of Electronics & Computer Engineering

Tribhuvan University (ACEM)
Kathmandu, Nepal

nirala.075bct034@acem.edu.np

Abstract—While novice programmers often find it challenging
to learn coding in CS1 courses, teachers also face the daunting
task of facilitating an environment that encourages students to
become original thinkers and develop meta-thinking skills. A
significant reason for these teaching and learning challenges is
the focus on outcome rather than process. Merely reviewing
and assessing a student’s submitted code is often insufficient to
provide insightful and personalized feedback to students. This
work suggests a potential solution: quantitative summaries and
data visualizations of a student’s coding process that can serve
as powerful tools for highlighting students’ coding habits. By
presenting process data—such as breaks taken, code execution
history, AI usage, copy-paste events, and playback of the code
evolution process—in easy-to-understand and interactive visual-
izations, students can reflect on and learn from their process. An
added benefit of this process-focused approach to teaching and
learning is the automatic promotion of academic integrity. This
paper elaborates on these process visualizations and discusses
strategies for their effective implementation in CS1 courses.

Index Terms—programming feedback; AI-assisted coding; self-
directed learning; coding fundamentals; academic integrity

I. INTRODUCTION

In computer programming education, the easy accessibility
of generative AI tools has added challenges for instructors
in helping students master fundamental coding skills. These
basic skills are essential for most careers related to coding,
regardless of whether AI copilots are utilized. Students learn-
ing to code in CS1 courses often encounter frustration when
confronted with cryptic error messages from compilers [1].
During independent coding assignments, these cryptic mes-
sages can lead to potential disengagement. At these moments
of frustration and disengagement, it is common for many
students to seek alternative methods to complete their tasks. In
response to these challenges, this work proposes shifting the
focus from the outcome to the student’s coding process. With
quantitative summaries and data visualizations that summarize
a student’s coding process, they can self-learn from their
process and utilize the process data to acquire feedback.

Shifting the focus from the outcomes to the underlying
process holds promise for guiding students in utilizing AI
effectively (if they use it) and empowering instructors to
teach coding fundamentals more efficiently. Providing access
to the coding process also helps students develop a deeper
understanding of fundamental concepts by encouraging them

to self-reflect on their work. Ultimately, this can lead to more
effective teaching and learning practices. One example of such
a process-revealing tool is Process Feedback [2].

The rest of the paper is organized as follows. First, the
Process Feedback online compiler is described. Next, several
quantitative summaries and data visualizations that can display
a student’s coding process are explained. Finally, in the dis-
cussion section, the proposed idea of focusing on the process
is discussed in relation to two recent studies.

II. PROCESS FEEDBACK ONLINE COMPILER

Process Feedback (PF) [2], available at processfeedback.org,
is an innovative and free online coding (and writing) tool
designed to reveal students’ process behind their work. The
platform encourages students to view their coding process,
reflect on it, and self-learn. When students code on the
platform, they see their process represented through several
summaries and visualizations, including playback of the entire
coding journey, breaks taken during coding, total time taken
to complete the task, typing fluency, copy-paste events, time
spent on each code block, code execution history, and AI
usage.

The PF platform also allows students to use AI innovatively.
Anytime during coding, students can click on the “Explain
Code” button to receive a plain-English explanation of the
selected code. Similarly, when students encounter a compiler
error message, they can click on the “Explain Error” button to
receive an explanation of the error message with hints to fix
the code in an easy-to-understand language. This guard-railed
way of using AI, as shown by other recent studies [3], is known
to engage students in learning coding without providing them
full solutions.

PF enables students to self-explore and self-learn from their
processes while also allowing them to download all data and
visuals as a comprehensive PDF report to share with their
instructor. Equipped with such a process report, instructors
can offer personalized feedback to their students, focusing on
both the students’ outcomes and their underlying processes.

III. CODING PROCESS VISUALIZATIONS

Using the visualizations and summaries implemented in
the Process Feedback platform as a reference, this section



describes various unique data summaries and visualizations.
Individually and collectively, these process summaries and
visualizations display a student’s coding process, providing
insights into their coding habits.

A. Playback of the Coding Journey

As shown in Figure 1A, allowing students to play back
their coding journey is an engaging technique that displays
the entire coding process like a film. With options to pause,
stop, replay, and control the speed of playback, such an
interactive feature allows students to observe the steps taken
during their coding process and see the evolution of the code’s
structure. During playback, characters added are shown in
green highlights and those deleted as red strike-through text,
enabling students to spot changes during playback. Besides
Process Feedback, other tools such as CodeProcess [4] also
discuss playback as a dynamic view of the coding process.

B. Continuous Streak of Typing and Breaks Taken

Displaying a timeline with segments of continuous active
typing and thinking (or inactive) time durations can help
analyze how engaged a student was when coding. Such a
timeline, as shown in Figure 1B, can also help students realize
how often they were distracted while working on the task.
Observing the durations of active typing and thinking (or
inactive) periods can help both students and instructors gauge
the level of engagement in the task. For instance, if a student
completes a challenging coding task in a single continuous
active typing duration of 5 minutes, reviewing the process data
can make it easy to discern if the student was typing the code
from another source or is indeed a proficient programmer.

C. Location of Code Edit at Various Time Points

When coding, students often spend most of their time on
a code block that has the core logic for the task at hand.
For instance, implementing a function that contains arrays
and loops can be challenging and time-consuming for novice
programmers and they could spend much of their time in these
code blocks. The Edit Location chart can visually reveal such
struggles by showing which part of the code a student was
actively working on at any given time in their coding journey.
As shown in Figure 1C, it is a stacked bar diagram where the
active code block is colored and highlighted. This chart can
be particularly helpful to see how often a student revised a
piece of code after initially typing it.

D. How Often AI was Used (to Explain Code or Error)

Tools like Process Feedback have “Explanatory AI” built
into them, allowing students to use features such as “Explain
Code” and “Explain Error.” How often a student uses such AI
features can also be useful data to review. As shown in Figure
1D, AI usage can be visualized as a lollipop chart with green
dots showing the instances of “Explain Code” usage and red
dots showing “Explain Error” usage.

E. How Often Code Executions Failed or Passed

A code execution history chart, as shown in Figure 1E, can
visually display how often a student’s code execution failed
or passed. It is also a timeline chart with points indicating
successful and unsuccessful code executions, allowing students
to observe the frequency and timing of successful (green dots)
and failed (red dots) code executions. In the interactive version
of the report, hovering over the dots shows the actual code
error or output. While it may be quite common for students
to have many failed executions and at least one successful
execution at the end, it may be uncommon for students to
have no successful executions.

F. Number of Characters Added or Removed Over Time

The number of characters added or removed over time can
be shown as a timeline bubble chart, as shown in Figure
1F, where the sizes of the bubbles represent the number of
characters added or deleted at specific time points. Such a chart
can help students see how common it is to delete text during
the coding process. Additionally, if there are no deletions
at all during a long coding process, which is uncommon, it
can prompt the instructor to investigate further to understand
why the student was typing so fluently without deletions. For
instance, such a timeline bubble chart, with no deletions, can
often be a sign of unrefined work.

G. Typing Speed and Copy-paste Events

Visualizing the typing speed over time, as shown in Figure
1G, can reveal periods where a student is fluently typing,
typing slowly (possibly thoughtfully), or copy-pasting. While
records of copy-pasting may not be very useful for the students
themselves, they can be informative for their instructors to
discuss (if needed) why it was necessary to paste code from
outside. Such a chart can also help students establish that they
did not simply copy-paste from elsewhere to complete their
work.

H. Comparing the Code at a Time Point with Any Other

Implementing a dual-editor view, with left and right editors,
allows students to compare their code at any given time point
with another version, helping to identify specific changes
of interest (see Figure 1H). This feature can be particularly
beneficial when combined with the visualizations discussed
earlier. For instance, clicking on a typing speed dot indicating
copy-paste actions can instantly scroll to the comparator,
displaying precisely what was pasted.

I. The Final Output of the Code

A common practice in coding assignments is to have
students submit screenshots of the output of their code. The
final output of the code (or the most recent code output) can
be shown along with other process visuals for completeness.
While this makes grading easier for instructors, it also helps
students ensure that they run and test the code before submit-
ting it.



Fig. 1. Data visualizations for summarizing and displaying the coding process of a student.



J. The Most Frequently Observed Error

Students often spend a lot of their time fixing similar kinds
of bugs, unaware that they are doing so. Along with other
process summaries and visuals, showing the most frequent
error message that the student received during the coding
process can help the student understand what bugs they spend
most of their time fixing. Looking at the most frequent errors
of all students, instructors can also find the top errors that most
students in the class faced.

K. Coding Time Summary

As a summary of the coding process, several key time-
related data points can be shown. These may include the total
time taken to finish a coding task (including the breaks taken)
and the total active typing time. For instructors, in particular,
this single piece of data—the time taken to complete the
task—can be a key to determining if the student’s work needs
appreciation or further attention. For example, if a student
takes more than an hour to complete an easy programming
task, it can be revealing to explore further and find out what
took so long.

IV. DISCUSSION

This section relates the proposed approach of using visual-
izations to capture a student’s coding process with two recent
studies that capture a student’s process.

In one study involving a CS1 course, the authors required
participating students to record their keystroke data (coding
process information) and submit the keystroke data along
with their assignments [5]. Students were asked to install an
additional plugin that automatically recorded every keystroke
they typed while coding. The results of the experiment showed
that requiring students to submit the process data deterred them
from plagiarizing. However, a significant percentage of stu-
dents surveyed expressed anxiety about plagiarism detection
through keystroke data. One student, in particular, mentioned
significant stress and anxiety throughout the semester due to
concerns about being accused of plagiarism. This anxiety is
understandable, as false positives in plagiarism detection can
lead to unwarranted accusations.

Although the results of the plagiarism deterrence study were
not encouraging from the perspective of student acceptance,
given the research design this was completely expected. When
an instructor requires students to install an additional plugin as
a “recorder” where only the instructor analyzes the recorded
data, it is natural for some students to feel anxious. To the
students installing the plugin, the only purpose of the plugin
is so they can be monitored.

A better way of introducing such process-recording tools is
to respect student privacy as much as possible, let the student
be in control of the process data, and use the process data
primarily to enhance learning and not to deter plagiarism. If
students are engaged in learning and are required to reflect
on their process, plagiarism can automatically be less of a
concern. In a recent work where students using such process
tools were surveyed, students expressed that if such tools are

introduced as learning enhancers that can help improve their
grades, they are more receptive to these process-revealing tools
[6].

Another related study focused on capturing and visualizing
a student’s writing process. Having 65 high-school students
write in InputLog, a process recording tool similar to Process
Feedback, the authors explored how showing students person-
alized process reports can affect their writing skills compared
to the national baseline [7]. The study concluded that the
implementation of the process feedback approach over just one
week resulted in a notable improvement in the text quality of
the participants. This improvement was on par with what could
typically be achieved with one full year of regular schooling.

The writing study highlights the significant effectiveness of
process-oriented tools and the impact of process feedback. The
notable improvements in text quality observed among writing
students suggest a potential for similar improvements in code
quality for students learning to code. Introducing this practice
early could revolutionize coding education by helping students
identify habits and address their key pain points.

In today’s context, where AI presents both challenges and
opportunities in education, tools like Process Feedback can
play a pivotal role in enriching students’ coding skills by
empowering instructors to assess student work more effec-
tively and promoting academic integrity. By providing students
with insights into their coding processes and encouraging self-
reflection through process summaries and visualizations, these
tools can significantly enhance learning outcomes.

V. CONCLUSION

This paper discussed how a CS1 student’s coding process
can be effectively summarized using various data visualization
techniques. The insights derived from these visualizations
can help students enhance their learning by reflecting on
the challenges faced during the coding process. Additionally,
students can share their process reports with instructors to
receive targeted feedback. With these process summaries and
visuals, instructors can quickly and accurately assess students’
work. Overall, such a process-focused approach promotes
transparency and academic integrity in coding education.

REFERENCES

[1] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters,
John Homer, Nevan Simone, and Maxine Cohen. On novices’ interaction
with compiler error messages: A human factors approach. In Proceedings
of the 2017 ACM Conference on International Computing Education
Research, pages 74–82, 2017.

[2] Badri Adhikari. Thinking beyond chatbots’ threat to education: Visual-
izations to elucidate the writing or coding process. Education Sciences,
13(9):922, 2023.

[3] Ha Nguyen and Vicki Allan. Using gpt-4 to provide tiered, formative
code feedback. In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1, pages 958–964, 2024.

[4] Raj Shrestha, Juho Leinonen, Arto Hellas, Petri Ihantola, and John
Edwards. Codeprocess charts: Visualizing the process of writing code. In
Proceedings of the 24th Australasian Computing Education Conference,
pages 46–55, 2022.

[5] Kaden Hart, Chad Mano, and John Edwards. Plagiarism deterrence in
cs1 through keystroke data. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, pages 493–499, 2023.



[6] Kate Arendes, Shea Kerkhoff, and Badri Adhikari. Engaging students to
learn coding in the ai era with emphasis on the process. Edukasiana:
Jurnal Inovasi Pendidikan, 3(2):257–268, 2024.

[7] Nina Vandermeulen, Elke Van Steendam, Sven De Maeyer, and Gert
Rijlaarsdam. Writing process feedback based on keystroke logging
and comparison with exemplars: Effects on the quality and process of
synthesis texts. Written Communication, 40(1):90–144, 2023.


	Introduction
	Process Feedback Online Compiler
	Coding Process Visualizations
	Playback of the Coding Journey
	Continuous Streak of Typing and Breaks Taken
	Location of Code Edit at Various Time Points
	How Often AI was Used (to Explain Code or Error)
	How Often Code Executions Failed or Passed
	Number of Characters Added or Removed Over Time
	Typing Speed and Copy-paste Events
	Comparing the Code at a Time Point with Any Other 
	The Final Output of the Code
	The Most Frequently Observed Error
	Coding Time Summary

	Discussion
	Conclusion
	References

