
When Not to Use LLM to
Code?

Objective

Introduce the core question and set the stage for exploring the
sometimes contradictory evidence surrounding LLMs and developer
productivity.

The Future is Now? Industry Visions of AI-Powered Coding

Meta's Ambitious Goal: Mark Zuckerberg aims for AI to write 50％ of Meta's

code by 2026, with an increasing trend thereafter.

Microsoft's Current State: Satya Nadella reports 20％ to 30％ of Microsoft's current

code is AI-generated.

Evolving Developer Role: The vision for engineers to become "tech leads" managing

"armies of agents" suggests LLMs will fundamentally reshape development workflows

The Surprising Reality: When AI Slows Experienced
Developers Down

The METR Study: A randomized controlled trial (RCT) with experienced open-source
developers using frontier AI tools (e.g., Claude 3.5/3.7 Sonnet).

Unexpected Outcome: Developers took 19％ longer to complete tasks when using AI
tools, a statistically significant slowdown.

Perception vs. Reality: Developers expected a 24％ speedup and believed they gained
20％ even after the study, highlighting a significant disconnect.

Key Takeaway: While counter-intuitive to industry narratives, rigorous study suggests
LLMs, as they were in early 2025, can hinder, rather than help, experienced developers in
certain real-world scenarios.

Unpacking the Paradox: Why LLMs Might Not Always Boost
Productivity
Content (from METR study analysis, reinforced by Axios):

Context Sensitivity: LLMs may struggle with the nuance, implicit requirements
(testing, documentation), and high quality standards of real-world, complex
open-source projects.

Learning Curve: Developers' "dozens to hundreds of hours" with LLMs might
not be sufficient for optimal integration and "flow state" productivity.

Developer Behavior: Developers might be using LLMs for enjoyment, learning,
or exploration rather than pure productivity, or over-relying on them.

Debugging Overhead: Code generated by LLMs might introduce subtle bugs or
require significant refactoring, increasing overall task completion time.

Title: Practical Guidance: Scenarios Where Caution is Key
Highly Complex & Nuanced Projects: For tasks requiring deep understanding of existing
codebase, implicit rules, and specific architectural patterns, LLM output may be a hindrance.

High-Stakes & Mission-Critical Code: Where errors have severe consequences (e.g., security,
financial systems), the risk of subtle LLM-introduced bugs outweighs speed benefits.

Optimizing for "Flow State" & Deep Work: Constant context-switching to prompt/verify LLM output
can disrupt a developer's cognitive flow, especially for experienced professionals.

Learning & Skill Development: Over-reliance on LLMs can hinder foundational understanding, debugging
skills, and problem-solving abilities for junior developer

Unique or Novel Problems: For truly novel problems where precedents are scarce, LLMs may generate
plausible but incorrect or inefficient solutions.

Key Takeaway: Consider the project's complexity, the criticality of the code, and the impact on the
developer's cognitive process before integrating LLMs

Maximizing Impact: Strategic Use of LLMs in Coding
Boilerplate & Repetitive Tasks: Generating common code structures, simple functions,
or unit tests.

Code Explanation & Refactoring: Getting quick explanations of unfamiliar code or
suggesting refactoring improvements.

Learning New APIs/Libraries: Quickly generating examples for unfamiliar functions or
frameworks.

Initial Prototyping: Rapidly creating a basic structure for a new feature or application.

Conclusion & Future Outlook

The Evolving Landscape: AI as a Partner, Not a Replacement (Yet)

AI is Rapidly Evolving: The 19％ slowdown is a snapshot from early 2025; future LLM iterations and better
integration methods may yield positive productivity gains.

Nuance is Key: The debate isn't "AI or no AI," but "how and when to best integrate AI" into complex human
workflows.

Continuous Evaluation: Rigorous, real-world studies are crucial to cut through hype and provide actionable
insights for developers and organizations.

Developer Adaptation: The role of the developer will continue to evolve, requiring adaptation to new tools
and methodologies.

Key Takeaway: While AI holds immense promise for coding, a critical and data-driven approach is essential
for realizing its true potential and avoiding pitfalls.

