Deep Transter
Learning

UMSL 2022 DL Workshop




I Building a network

» Suppose we built to identify image as cat or dog
with very high accuracy

* We are now asked to create another network to
identify pictures of bears
¢ Could build new network from scratch
* Increased training time
* May not have enough data

* In practice, most people use pre-existing network
architectures and then adjust them for new task



I Deep Transfer Learning

Task 1

Knowledge transfer

Task 2

: : New A
l Data2 Model1 Predictions2

* Repurposing of trained deep learning networks for other tasks

« Useful when data for desired task is limited or the two tasks (old and new) are related in
some way

» Assumption is that networks learn certain core features that transfer across
different domains



I Feature Learning

* Neural networks will typically learn edges
in the first layers, forms in middle layers,
and task-specific features in the latter layers

« Modifying the latter layers is what we are
interested in

» Two ways we can use pre-trained networks
* Feature Extraction
* Best for when data from target task is very small
* Fine-tuning

» Best for when data from target task is very large
and shares some domain with pre-trained
network

labels

increasingly
complex features

unsupervised learning

supervised learning




I Feature Extraction

‘77 Trained Trained Trained
NN - Convolutional Convolutional Convolutional
Pre- C ‘ Base Base Base
trained — {} {}
Network -
Dense J Trained New
Layers ‘ Classifier Classifier
Prediction Prediction Prediction

* Remove the dense layers from a pre-trained network, leaving only a “convolutional base”

* Run data through “convolutional base” (the weights DO NOT change)
» Representations learned by base are more generic and therefore transferrable

* Train a newly manufactured dense layer with the output from the convolutions



Fine-Tuning

Conv | N Conv | | Conv N Conv N Conv N] Dense
Layer —| Layer —v| Layer [——] Layer —v| Layer —] Layer

J \ J
! Y

weights DO NOT change train this section

« Remove dense layers from pre-trained network (feature extraction)

« Make some layers of CNN trainable

« Slightly adjust the abstract representations of the pre-trained network to make
them relevant for problem at hand

* Train both the adjustable layers of CNN and the dense layers



» Advantages

* Faster training time

* Existing CNNs are trained on
massive amounts of data

« Higher accuracy after training

* Available networks
(https://keras.io/api/applications/)

Available models

) Time (ms) per | Time (ms) per
Model Size Top-1 Top-5 Parameters | Depth | inference step | inference step
(MB) Accuracy |Accuracy (CPU) (GPU)

Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1
VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2
VGG19 549 71.3% 90.0% 143.7M 19 84.8 4.4
ResNet50 98 74.9% 92.1% 25.6M 107 58.2 4.6
ResNet50V2 98 76.0% 93.0% 25.6M 103 45.6 4.4
ResNet101 171 76.4% 92.8% 44.7M 209 89.6 5.2
ResNet101V2 171 77.2% 93.8% 44.7M 205 72.7 5.4
ResNet152 232 76.6% 93.1% 60.4M 311 127.4 6.5
ResNet152V2 232 78.0% 94.2% 60.4M 307 107.5 6.6
InceptionV3 92 77.9% 93.7% 23.9M 189 42.2 6.9
InceptionResNetV2 215 80.3% 95.3% 55.9M 449 130.2 10.0
MobileNet 16 70.4% 89.5% 4.3M 55 22.6 34
MobileNetV2 14 71.3% 90.1% 3.5M 105 25.9 3.8
DenseNet121 33 75.0% 92.3% 8.1M 242 771 5.4
DenseNet169 57 76.2% 93.2% 14.3M 338 96.4 6.3
DenseNet201 80 77.3% 93.6% 20.2M 402 127.2 6.7
NASNetMobile 23 74.4% 91.9% 5.3M 389 27.0 6.7
NASNetLarge 343 82.5% 96.0% 88.9M 533 344.5 20.0




