
NP-Completeness

Intended module reading flow: P-> NP -> NPC

P:
Polynomial

Time

NP: Non
deterministic
Polynomial

Time

NPC:
NP-Complete

P vs. NP is a major
unsolved 'Millenium

problem, and generating
a correct proof carries

a $1 Million prize.

P Problems are
problems / tasks which

can be solved and
verified in polynomial

runtime, or where
runtime can be

expressed as O(n^k)

Think about Multiplication!
If you want to multiply 50 and
7, you don't add 7 to itself 50

times, you perform a shortcut, like
the one to the right. You can carry
numbers and so on to get a result

faster than the slowest method.
This is a great example of a

Polynomial or P runtime
problem.

NP problems are
problems which can be
'verified' in polynomial

time, but can either
definitely or definitely

not be solved in
polynomial runtime;

where verifiable means
the solution can be

realistically validated in
a runtime expressed as

O(n^k)

Think about
Sudoku! There are nearly

no, if any, legitimate
shortcuts in solving a sudoku

puzzle, each square must
essentially be 'guess and

checked' for compability. This
ensures it is not a P problem,
but, what about validating a
correct solution? You can do

that much quicker than
finding it! This is what
makes it a NP problem

A problem is NP complete if its
solution can be verified in

polynomial time, but it is unknown if
it can be solved in polynomial

runtime. A major thereom in the P
vs. NP proof postulates that If any

NP problem can be solved in a
polynomial runtime, then all NP

problems can be solved in
polynomial runtime. NP

Completeness

"Does
being able to quickly
recognize NP correct
answers mean there
is also a way to find
them?" Per the video

above

To clarify this thereom,
we again we can turn to

Suduku! If it is possible to
solve a sudoku puzzle in the
same time we can verify the

solution, or atleast even
slightly faster than the brute
force method, then we can

make the same improvements
in solution runtime on all of

the problems classified as NP.
This is called a polynomial
time reduction. So solving
sudoku faster also means

solving something like
chess or protein folding

faster.

Below we can see the primary two formulations of the famous P vs. NP
problem, if P is not equal to NP, then they are in a seperate set entirely than

NP-hard problems. It is currently unknown if NP hard problems can be
solved with the same speed as regular NP or P problems. Part of the proof
would handle if NP complete are verifiable and solvable within polynomial

running time constraints. If P is equal to NP, then all problems can be
verified and solved in polynomial running time, we just haven't found out

how to do it yet. This proof could change how we see a majority of unsolved
computational problems accross many different disciplines!

A phenomenal
visual

explanation of
P vs. NP can

be found
here!

A major point of uncertainty in these
ideas, and the core idea behind the P

vs NP. problem, has to do with that
of sets! Are all NP problems in the

same set? Are P problems a
subset of that same set? Or are

P and easier NP problems in
a set of their own?

The problem of verification
must be rigoursly defined in order

to clearly draw the boundary
between the three classes of

problems

Hamilton
Cycles have

been proven to
be an NP
complete
problem

Verification
Algorithms

A two argument
algorithm where one

argument is an
ordinary string, the

other is a string
called a certificate.

The algorithm
verifies the initial

input string: if there
exists the certificate

such that
Algorithm(Initial,
Certificate) = 1 Reducabiliy

Find a phenomenal proof
of the NP-Completeness

for Hamilton Cycles can be
found here!

This is the idea of reducing
a problem which exists in
one set, say NP hard, to
component(s) which are

member(s) of a set of easier
problems

Think of basic
algebra! Rearranging
pieces of an equation,
and setting one half of
the equation equal to
zero, etc, these are

tactics used to reduce
the overall complexity

of the problem

In more
specific terms, a

reduction function
f is found by a

fedictopm
algorithim F

Jacob Barger
CMPSCI 5130
Badri Adhikari
12/15/20

https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.youtube.com/watch?v=YX40hbAHx3s&ab_channel=hackerdashery
https://www.geeksforgeeks.org/proof-hamiltonian-path-np-complete/

	5130 Final Concept Map
	Page 1

