
NP-Completeness

Intended module reading flow: P-> NP -> NPC 

P: 
Polynomial 

Time

NP: Non 
deterministic 
Polynomial 

Time

NPC: 
NP-Complete

P vs. NP is a major 
unsolved 'Millenium 

problem, and generating 
a correct proof carries 

a $1 Million prize.

P Problems are 
problems / tasks which 

can be solved and 
verified in polynomial 

runtime, or where 
runtime can be 

expressed as O(n^k) 

Think about Multiplication!  
If you want to multiply 50 and 
7, you don't add 7 to itself 50 

times, you perform a shortcut, like 
the one to the right. You can carry 
numbers and so on to get  a result 

faster than the slowest method. 
This is a great example of a 

Polynomial or P runtime 
problem.

NP problems are 
problems which can be 
'verified' in polynomial 

time, but can either 
definitely or definitely 

not be solved in 
polynomial runtime; 

where verifiable means 
the solution can be 

realistically validated in 
a runtime expressed as 

O(n^k)  

Think about 
Sudoku! There are nearly 

no, if any, legitimate 
shortcuts in solving a sudoku 

puzzle, each square must 
essentially be 'guess and 

checked' for compability. This 
ensures it is not a P problem, 
but, what about validating a 
correct solution? You can do 

that much quicker than 
finding it! This is what 
makes it a NP problem

A problem is NP complete if its 
solution can be verified in 

polynomial time, but it is unknown if 
it can be solved in polynomial 

runtime. A major thereom in the P 
vs. NP proof postulates that If any  

NP problem can be solved in a 
polynomial runtime, then all NP 

problems can be solved in 
polynomial runtime. NP 

Completeness 

"Does 
being able to quickly 
recognize NP correct 
answers mean there 
is also a way to find 
them?" Per the video 

above

To clarify this thereom, 
we again we can turn to 

Suduku! If it is possible to 
solve a sudoku puzzle in the 
same time we can verify the 

solution, or atleast even 
slightly faster than the brute 
force method, then we can 

make the same improvements 
in solution runtime on all of 

the problems classified as NP. 
This is called a polynomial 
time reduction. So solving 
sudoku faster also means 

solving something like 
chess or protein folding 

faster.

Below we can see the primary two formulations of the famous P vs. NP 
problem, if P is not equal to NP, then they are in a seperate set entirely than 

NP-hard problems. It is currently unknown if NP hard problems can be 
solved with the same speed as regular NP or P problems. Part of the proof 
would handle if NP complete are verifiable and solvable within polynomial 

running time constraints. If P is equal to NP, then all problems can be 
verified and solved in polynomial running time, we just haven't found out 

how to do it yet. This proof could change how we see a majority of unsolved 
computational problems accross many different disciplines! 

A phenomenal 
visual 

explanation of 
P vs. NP can 

be found 
here!

A major point of uncertainty in these 
ideas, and the core idea behind the P 

vs NP. problem, has to do with that 
of sets! Are all NP problems in the 

same set? Are P problems a 
subset of that same set? Or are 

P and easier NP problems in 
a set of their own? 

The problem of verification 
must be rigoursly defined in order 

to clearly draw the boundary 
between the three classes of 

problems

Hamilton 
Cycles have 

been proven to 
be an NP 
complete 
problem 

Verification 
Algorithms

A two argument 
algorithm where one 

argument is an 
ordinary string, the 

other is a string 
called a certificate. 

The algorithm 
verifies the initial 

input string: if there 
exists the certificate 

such that 
Algorithm(Initial, 
Certificate)  = 1 Reducabiliy

Find a phenomenal proof 
of the NP-Completeness 

for Hamilton Cycles can be 
found here!

This is the idea of reducing 
a problem which exists in 
one set, say NP hard, to 
component(s) which are 

member(s) of a set of easier 
problems

Think of basic 
algebra! Rearranging 
pieces of an equation, 
and setting one half of 
the equation equal to 
zero, etc, these are 

tactics used to reduce 
the overall complexity 

of the problem

In more 
specific terms, a 

reduction function 
f is found by a 

fedictopm 
algorithim F
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