Please read this with the goal of using the knowledge to do the homework below.
Discuss a problem where dynamic programming is not applicable and explain why dynamic programming is not applicable to the problem.
With the help of an example, discuss the steps involved in developing a dynamic programming algorithm to solve a problem.
For the problem of calculating nth Fibonacci number - (a) propose a recursive solution (implementation), (b) a dynamic programming solution using the top-down approach, and (c) a dynamic programming solution using the bottom-up approach. Test the running time of the three implemetations with large values of n and discuss your running time. You can use (not required) the libraries such as timeit to check your running times.
What is the matrix chain multiplication problem? Discuss how dynamic programming can be applied to solve it.
The “non structural protein 2” (nsp2
) protein is found to be linked to the mechanism of Coronavirus (read more). Below is the sequence of this protein (first two lines, ignoring the line starting with a hash). In addition to the sequence of this protein, below are the sequences of two other similar (homologous) proteins (see nsp2.hhba3m.txt for the alignment). Implement a dynamic programming solution to calculate the longest common subsequence (LCS) between - (a) nsp2
and A0A1B3Q5V8
and (b) nsp2
and Q9YMB7
. These are two problems that can be solved using the same implementation/code. Lower-case letters in the sequences, if there are any, must be skipped totally. You should print not just the length of the LCS but also the actual LCS.
# The lines starting with > are header lines that are the names of the sequence
# Lower-case letters in the sequences must be skipped totally.
>nsp2
AYTRYVDNNFCGPDGYPLECIKDLLARAGKASCTLSEQLDFIDTKRGVYCCREHEHEIAWYTERSEKSYELQTPFEIKLAKKFDTFNGECPNFVFPLNSIIKTIQPRVEKKKLDGFMGRIRSVYPVASPNECNQMCLSTLMKCDHCGETSWQTGDFVKATCEFCGTENLTKEGATTCGYLPQNAVVKIYCPACHNSEVGPEHSLAEYHNESGLKTILRKGGRTIAFGGCVFSYVGCHNKCAYWVPRASANIGCNHTGVVGEGSEGLNDNLLEILQKEKVNINIVGDFKLNEEIAIILASFSASTSAFVETVKGLDYKAFKQIVESCGNFKVTKGKAKKGAWNIGEQKSILSPLYAFASEAARVVRSIFSRTLETAQNSVRVLQKAAITILDGISQYSLRLIDAMMFTSDLATNNLVVMAYITGGVVQLTSQWLTNIFGTVYEKLKPVLDWLEEKFKEGVEFLRDGWEIVKFISTCACEIVGGQIVTCAKEIKESVQTFFKLVNKFLALCADSIIIGGAKLKALNLGETFVTHSKGLYRKCVKSREETGLLMPLKAPKEIIFLEGETLPTEVLTEEVVLKTGDLQPLEQPTSEAVEAPLVGTPVCINGLMLLEIKDTEKYCALAPNMMVTNNTFTLKGG
>A0A1B3Q5V8
FLTDQYGFDADGVLAAPIKEVLGDKGAGMSlveltkflgkyRTADGYELPSGIVKVAVKVVRKNLPVSKQSIFTVLGVTERVVDGFYYPYSTNSVVSYTKPRAGATVGNTVQSVMLSVYGTEAYNPVTPVVRLRCSSCDFYGWVPVKDLGCVTCSCAAVHQitsSCIDAESAGLIKQGAVMLVDRSPSMRVVPGNRlYVAFGGAIWSPIGKVNGVQVWVPRAYSCVAGDHSGAVGSGDVnTINKEIMSLIIDGVRIDDEVLEQPSCGVLIANLEDPSAAPRVHTVDSLRQLCVDNNvmlgDTplpKDEFHPgivGLSYHFYRACWYGVLTAKSFGAFKELLQSEEVRLSHFCANIRRCLDRALNWARTTGnvsllssSLVLKALAENLLDSVKNTPFLVGDLVKPVLDWIVEKMVLARDSVVSCAEAVLSLFNMQFTFAKGKFTFLKEKLNKSCVALRELLTVIVNKFATTVKWAGCKIDGFYNGDYHFFSAKGVLTEVQVCAKTLGAMLtPRQQRMEVEVLDGKYdAPVAITVPELEELNGTLEEVFGFDDLTLVRGSLVALASKVFVRTDDGLLFRYVKSGGVFLKAFRLRGG
>Q9YMB7
YVDQYMCGADGKPVieGDFKDYFGDEDIIEFEGEEYHCAWTTVRDEKPLNQQTLFTIQEIQYNLDIPHKLPNCATRHVAPPVKKNSKIVLsedYKKLYDIFGSPFMGNGDCLSKCFDTLHFIAATlRCPCGSESSGVGDWTGFKTACCglSGKVKGVTLGDIKPGDAVvtsMSAGKgVKFFANCVLQYAGDVEGVSIWKVIKTFTVDETVCTPGFEGELNDFIKPESKSLVACSVKRAFITGDIDDAVHDCIITGKLDLSTNLFGNVGlLFKKTPWFvQKCGALFVDAWKVVEELCGSLTLTYKQIYEVVASLCTSAFTIVNYkpTFVVPDNRVKDLVDKCVKVLVKAFDVFTQIITIAGIEAKCFVLGAKYLLFNNALVKLVSVKILGKkQKgLECAFfatsLVGATVNVTPKRTETATISLNKVDDVVAPGEGYIVIVGDMAFYKSGEYYFMMSSPNFVLTNNVFK
Implement a dynamic programming solution to calculate the longest common subsequence (LCS) of ⟨1,0,0,1,0,1,0,1⟩
and ⟨0,1,0,1,1,0,1,1,0⟩
(CLRS: 15.4-1). You can reuse the code that you developed for solving Q#5.
Let X = ⟨x 1 , x 2 , …, x m ⟩ and Y = ⟨y 1 , y 2 , …, y n ⟩ be sequences, and let Z = ⟨z 1 , z 2 , …, z k ⟩ be any LCS of X and Y. Describe, mathematically, how the LCS problem exhibits the optimal substructure property. (Hint: consider three cases).
Someone has implemented the following as the top-down dynamic programming implementation for calculating nth Fibonacci number. Is this correct? Discuss.
def fib_top_down(n):
result = [0] * (n + 1)
if n == 0:
return 0
elif n == 1 or n == 2:
return 1
if result[n] != 0:
return result[n]
result[n] = fib_top_down(n-1) + fib_top_down(n-2)
return result[n]